Skip to content

ShenZheng2000/Instance-Warp-Scripts

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Utility Scripts

This repository hosts utility scripts for image warping research.

Key files are summarized in this readme

Consult the python files in each subfolder for further details.

bdd

Obtain coco-format json of specific weather or tod

(1) Convert bdd-format to coco-format: bdd/bdd2coco.py

(2) Filter coco-format json based on weather and tod: bdd/filter_file.py

sem_seg

Generate json containing bboxes for instance-level warping:

(1) Run: sem_seg/seg_to_bbox.py

coco

Visualize bboxes (and get results) on images

(1) Run detection on image

(2) Get category-wise results: coco/coco_mAP_simple.py

(3) Get bboxes visualizations: coco/vis_det_each.sh

video

Visualize bboxes on videos

(1) Convert video to image: video/video2image.py

(2) Generate pseduo-json for images: jsons/create_empty_json.py

(3) Run detection on image

(4) Visualize detected images: coco/vis_det_each.sh

(5) Merge images to video: video/image2video.py

dense_3d2d

Obtain 2d coco annotations from the DENSE dataset

(1) Get coco-format jsons with 2D bboxes: dense_3d2d/gen_coco.py

(2) Visualize 2D bboxes for debug: dense_3d2d/vis_many.py

(3) Count the occurence for each category: dense_3d2d/count_category.py

(4) Split into train/test based on ratio and tod constraints: dense_3d2d/train_test_split.py

About

Useful scripts for image warping research.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published