Skip to content

RecognizeEverything/RE0

Repository files navigation

RE0: Recognize Everything with 3D Zero-shot Instance Segmentation

Logo


Installation

# clone repo
git clone https://github.com/RecognizeEverything/RE0.git

# add submodule
git submodule add https://github.com/facebookresearch/detectron2.git submodule/detectron2
git submodule add https://github.com/qqlu/Entity.git submodule/Entity
git submodule add https://github.com/openai/CLIP.git submodule/CLIP
git submodule add https://github.com/ScanNet/ScanNet.git submodule/ScanNet

# prepare environment
conda create -n re0 python=3.8.18
conda install pytorch==1.13.0 torchvision==0.14.0 torchaudio==0.13.0 pytorch-cuda=11.7 -c pytorch -c nvidia
pip install mypy flake8 pylint
pip install -e submodule/detectron2
pip install -e submodule/CLIP

# Installation of Cropformer (https://github.com/qqlu/Entity/blob/main/Entityv2/CODE.md)
mv cropformer.py submodule/detectron2/projects/CropFormer/demo_cropformer/
cp -r submodule/Entity/Entityv2/CropFormer submodule/detectron2/projects
make -C submodule/detectron2/projects/CropFormer/entity_api/PythonAPI
cd submodule/detectron2/projects/CropFormer/mask2former/modeling/pixel_decoder/ops/
sh make.sh 

# Prepare the needed checkpoints
1.https://huggingface.co/datasets/qqlu1992/Adobe_EntitySeg/tree/main/CropFormer_model/Entity_Segmentation/Mask2Former_hornet_3x
2.https://github.com/qqlu/Entity/blob/main/Entityv2/README.md#model-zoo

Data Preparation

ScanNet200

  1. Download the ScanNet200 Dataset
  2. Run preprocessing code for raw ScanNet as follows:
cd data_preprocess/
python preprocess_2d_scannet.py --scannet_path="PATH/TO/YOUR/SCANS" --output_path="PATH/TO/OUTPUT" --frame_skip=10

Your Personal Dataset

  1. following the format of ScanNet
  2. update the setting.py

Getting Started

  • updating configs in setting.py

  • python main.py

Citation

If you find RE0 useful to your research, please cite our work

Acknowledgement

RE0 is inspirited by the following repos: SAM3D, SAMPro3D, OpenMask3D, Cropformer

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published