Skip to content

QinghongLin/EgoVLP_episodic_memory

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 

Repository files navigation

This repository includes the codebase for adapting EgoVLP features to NLQ & MQ, Ego4D challenges.

NLQ (VSLNet)

Model Video-Text Pre-extrated Features R@1, IoU=0.3 R@5, IoU=0.3 R@1, IoU=0.5 R@5, IoU=0.5
VSLNet SlowFast + BERT 5.45 10.74 3.12 6.63
VSLNet EgoVLP 10.84 18.84 6.81 13.45

MQ (VSGN)

  • Extract video features python3 run/test_mq.py --subsample 'video'

  • Set up VSGN codebase

    • Install environment dependency: pip install environment.txt

      conda create -n pytorch160 python=3.7 
      conda activate pytorch160   
      conda install pytorch=1.6.0 torchvision cudatoolkit=10.1.243 -c pytorch   
      conda install -c anaconda pandas    
      conda install -c anaconda h5py  
      conda install -c anaconda scipy 
      conda install -c conda-forge tensorboardx   
      conda install -c anaconda joblib    
      conda install -c conda-forge matplotlib 
      conda install -c conda-forge urllib3
    • training script: bash VSGN/script/train_infer_eval_ego_nce.sh by setting FEATURES=PATH downloaded video features

  • Model configs / training log / fine-tuned checkpoints

    • default setting: VSGN/outputs/egovlp_egonce_default_features

    • the best setting, w/ hyper-parameters searching (bs, LR, step_size, step_gamma): VSLNet/outputs/hps_search_egovlp_egonce_features

      • # how we perform hps
        EXP_NUMBER = 0
        INPUT_DIM=256
        
        for BSIZE in [8,16,32]:
            for LR_RATE in [0.0005,0.0001,0.00005,0.00001]:
                for STEP in [5,15,30]:
                    for GAMMA in [0.5,0.25,0.1,0.05]:
                        create_sbatches(EXP_NUMBER, INPUT_DIM, BSIZE, LR_RATE, STEP, GAMMA)
                        EXP_NUMBER+=1
                                
        print(f'Total Number of experiments {EXP_NUMBER}.')
  • Experimental results:

Model Video Pre-extrated Features R@1, IoU=0.5 R@5, IoU=0.5 mAP
VSGN SlowFast 25.16 46.18 6.03
VSGN EgoVLP 30.14 51.98 11.39

About

EgoVLP solution for NLQ & MQ, Ego4D challenges.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published