This repository contains the implementation of our paper.
-
Train
# Single GPU python3 tools/train.py ./configs/sfmocc/sfmocc.py # 8 GPUs ./tools/dist_train.sh ./configs/sfmocc/sfmocc.py 8
-
Evaluation
# Single GPU python3 tools/test.py ./configs/sfmocc/sfmocc.py ./path/to/ckpts.pth # 8 GPUs ./tools/dist_test.sh ./configs/sfmocc/sfmocc.py ./path/to/ckpts.pth 8
-
Visualization
# Dump predictions python3 tools/test.py configs/sfmocc/sfmocc.py ./path/to/ckpt.pth --dump_dir=pred_dir # Visualization (select scene-id) python tools/visualization/visual.py pred_dir/scene-xxxx
Many thanks to the authors of RenderOcc for the codebase.
@article{marcuzzi2025ral,
author = {R. Marcuzzi and L. Nunes and E.A. Marks and L. Wiesmann and T. L\"abe and J. Behley and C. Stachniss},
title = {{SfmOcc: Vision-Based 3D Semantic Occupancy Prediction in Urban
Environments}},
journal = ral,
year = {2025},
volume = {10},
number = {5},
pages = {5074-5081},
issn = {2377-3766},
doi = {10.1109/LRA.2025.3557227},
url = {https://www.ipb.uni-bonn.de/wp-content/papercite-data/pdf/marcuzzi2025ral.pdf},
}Copyright 2025, Rodrigo Marcuzzi, Cyrill Stachniss, Photogrammetry and Robotics Lab, University of Bonn.
This project is free software made available under the MIT License. For details see the LICENSE file