Zixuan Chen, Guangcong Wang, Jiahao Zhu, Jianhuang Lai, Xiaohua Xie.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2025
TL;DR: GuardSplat is an efficient watermarking framework to protect the copyright of 3DGS assets. It presents superior performance to state-of-the-art watermarking approaches in capacity, invisibility, robustness, security, and training efficiency.
Overview of GuardSplat. (a) Given a binary message
- Python 3.12
- CUDA 12.1 or higher
- NVIDIA RTX 3090
- PyTorch 2.5.1 or higher
Create a python env using conda
conda create -n GuardSplat python=3.12 -y
conda activate GuardSplatInstall the required libraries
bash setup.shPlease see setup.sh in details.
python make_decoder.py --mode train --msg_len <message_length> --save --num_epochs <training_epochs>
python make_decoder.py --mode test --msg_len <message_length>python gaussian-splatting/train.py -s <nerf_dir>/<nerf_item> -m <result_dir> -w # no distortions
python run_watermark.py -s <nerf_dir>/<nerf_item> -m <result_dir> -w --mode train --msg_len <message_length> --sdir <watermark_dir> --dtype blender
# single distortion
python run_watermark.py -s <nerf_dir>/<nerf_item> -m <result_dir> -w --mode train --msg_len <message_length> --sdir <watermark_dir> --dtype blender atypes <distortion>
# combined distortions
python run_watermark.py -s <nerf_dir>/<nerf_item> -m <result_dir> -w --mode train --msg_len <message_length> --sdir <watermark_dir> --dtype blender atypes <distortion1> <distortion2> ... <distortionN>More details can be shown in run.sh.
@InProceedings{Chen_2025_CVPR,
author = {Chen, Zixuan and Wang, Guangcong and Zhu, Jiahao and Lai, Jianhuang and Xie, Xiaohua},
title = {GuardSplat: Efficient and Robust Watermarking for 3D Gaussian Splatting},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2025},
pages = {16325-16335}
}We build our project based on gaussian-splatting and CLIP. The differentiable JPEG compression and VAE attack are implemented based on Diff-JPEG and WatermarkAttacker, respectively. We also follow the settings used in CopyRNeRF and WateRF. We sincerely thank them for their wonderful work and code release.

