|
| 1 | +from __future__ import print_function |
| 2 | +import argparse |
| 3 | +import os |
| 4 | +import random |
| 5 | +import torch |
| 6 | +import torch.nn as nn |
| 7 | +import torch.nn.parallel |
| 8 | +import torch.backends.cudnn as cudnn |
| 9 | +import torch.optim as optim |
| 10 | +import torch.utils.data |
| 11 | +import torchvision.datasets as dset |
| 12 | +import torchvision.transforms as transforms |
| 13 | +import torchvision.utils as vutils |
| 14 | + |
| 15 | +try: |
| 16 | + from apex import amp |
| 17 | +except ImportError: |
| 18 | + raise ImportError("Please install apex from https://www.github.com/nvidia/apex to run this example.") |
| 19 | + |
| 20 | + |
| 21 | +parser = argparse.ArgumentParser() |
| 22 | +parser.add_argument('--dataset', default='cifar10', help='cifar10 | lsun | mnist |imagenet | folder | lfw | fake') |
| 23 | +parser.add_argument('--dataroot', default='./', help='path to dataset') |
| 24 | +parser.add_argument('--workers', type=int, help='number of data loading workers', default=2) |
| 25 | +parser.add_argument('--batchSize', type=int, default=64, help='input batch size') |
| 26 | +parser.add_argument('--imageSize', type=int, default=64, help='the height / width of the input image to network') |
| 27 | +parser.add_argument('--nz', type=int, default=100, help='size of the latent z vector') |
| 28 | +parser.add_argument('--ngf', type=int, default=64) |
| 29 | +parser.add_argument('--ndf', type=int, default=64) |
| 30 | +parser.add_argument('--niter', type=int, default=25, help='number of epochs to train for') |
| 31 | +parser.add_argument('--lr', type=float, default=0.0002, help='learning rate, default=0.0002') |
| 32 | +parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam. default=0.5') |
| 33 | +parser.add_argument('--ngpu', type=int, default=1, help='number of GPUs to use') |
| 34 | +parser.add_argument('--netG', default='', help="path to netG (to continue training)") |
| 35 | +parser.add_argument('--netD', default='', help="path to netD (to continue training)") |
| 36 | +parser.add_argument('--outf', default='.', help='folder to output images and model checkpoints') |
| 37 | +parser.add_argument('--manualSeed', type=int, help='manual seed') |
| 38 | +parser.add_argument('--classes', default='bedroom', help='comma separated list of classes for the lsun data set') |
| 39 | +parser.add_argument('--opt_level', default='O1', help='amp opt_level, default="O1"') |
| 40 | + |
| 41 | +opt = parser.parse_args() |
| 42 | +print(opt) |
| 43 | + |
| 44 | + |
| 45 | +try: |
| 46 | + os.makedirs(opt.outf) |
| 47 | +except OSError: |
| 48 | + pass |
| 49 | + |
| 50 | +if opt.manualSeed is None: |
| 51 | + opt.manualSeed = 2809 |
| 52 | +print("Random Seed: ", opt.manualSeed) |
| 53 | +random.seed(opt.manualSeed) |
| 54 | +torch.manual_seed(opt.manualSeed) |
| 55 | + |
| 56 | +cudnn.benchmark = True |
| 57 | + |
| 58 | + |
| 59 | +if opt.dataset in ['imagenet', 'folder', 'lfw']: |
| 60 | + # folder dataset |
| 61 | + dataset = dset.ImageFolder(root=opt.dataroot, |
| 62 | + transform=transforms.Compose([ |
| 63 | + transforms.Resize(opt.imageSize), |
| 64 | + transforms.CenterCrop(opt.imageSize), |
| 65 | + transforms.ToTensor(), |
| 66 | + transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), |
| 67 | + ])) |
| 68 | + nc=3 |
| 69 | +elif opt.dataset == 'lsun': |
| 70 | + classes = [ c + '_train' for c in opt.classes.split(',')] |
| 71 | + dataset = dset.LSUN(root=opt.dataroot, classes=classes, |
| 72 | + transform=transforms.Compose([ |
| 73 | + transforms.Resize(opt.imageSize), |
| 74 | + transforms.CenterCrop(opt.imageSize), |
| 75 | + transforms.ToTensor(), |
| 76 | + transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), |
| 77 | + ])) |
| 78 | + nc=3 |
| 79 | +elif opt.dataset == 'cifar10': |
| 80 | + dataset = dset.CIFAR10(root=opt.dataroot, download=True, |
| 81 | + transform=transforms.Compose([ |
| 82 | + transforms.Resize(opt.imageSize), |
| 83 | + transforms.ToTensor(), |
| 84 | + transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), |
| 85 | + ])) |
| 86 | + nc=3 |
| 87 | + |
| 88 | +elif opt.dataset == 'mnist': |
| 89 | + dataset = dset.MNIST(root=opt.dataroot, download=True, |
| 90 | + transform=transforms.Compose([ |
| 91 | + transforms.Resize(opt.imageSize), |
| 92 | + transforms.ToTensor(), |
| 93 | + transforms.Normalize((0.5,), (0.5,)), |
| 94 | + ])) |
| 95 | + nc=1 |
| 96 | + |
| 97 | +elif opt.dataset == 'fake': |
| 98 | + dataset = dset.FakeData(image_size=(3, opt.imageSize, opt.imageSize), |
| 99 | + transform=transforms.ToTensor()) |
| 100 | + nc=3 |
| 101 | + |
| 102 | +assert dataset |
| 103 | +dataloader = torch.utils.data.DataLoader(dataset, batch_size=opt.batchSize, |
| 104 | + shuffle=True, num_workers=int(opt.workers)) |
| 105 | + |
| 106 | +device = torch.device("cuda:0") |
| 107 | +ngpu = int(opt.ngpu) |
| 108 | +nz = int(opt.nz) |
| 109 | +ngf = int(opt.ngf) |
| 110 | +ndf = int(opt.ndf) |
| 111 | + |
| 112 | + |
| 113 | +# custom weights initialization called on netG and netD |
| 114 | +def weights_init(m): |
| 115 | + classname = m.__class__.__name__ |
| 116 | + if classname.find('Conv') != -1: |
| 117 | + m.weight.data.normal_(0.0, 0.02) |
| 118 | + elif classname.find('BatchNorm') != -1: |
| 119 | + m.weight.data.normal_(1.0, 0.02) |
| 120 | + m.bias.data.fill_(0) |
| 121 | + |
| 122 | + |
| 123 | +class Generator(nn.Module): |
| 124 | + def __init__(self, ngpu): |
| 125 | + super(Generator, self).__init__() |
| 126 | + self.ngpu = ngpu |
| 127 | + self.main = nn.Sequential( |
| 128 | + # input is Z, going into a convolution |
| 129 | + nn.ConvTranspose2d( nz, ngf * 8, 4, 1, 0, bias=False), |
| 130 | + nn.BatchNorm2d(ngf * 8), |
| 131 | + nn.ReLU(True), |
| 132 | + # state size. (ngf*8) x 4 x 4 |
| 133 | + nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False), |
| 134 | + nn.BatchNorm2d(ngf * 4), |
| 135 | + nn.ReLU(True), |
| 136 | + # state size. (ngf*4) x 8 x 8 |
| 137 | + nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False), |
| 138 | + nn.BatchNorm2d(ngf * 2), |
| 139 | + nn.ReLU(True), |
| 140 | + # state size. (ngf*2) x 16 x 16 |
| 141 | + nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False), |
| 142 | + nn.BatchNorm2d(ngf), |
| 143 | + nn.ReLU(True), |
| 144 | + # state size. (ngf) x 32 x 32 |
| 145 | + nn.ConvTranspose2d( ngf, nc, 4, 2, 1, bias=False), |
| 146 | + nn.Tanh() |
| 147 | + # state size. (nc) x 64 x 64 |
| 148 | + ) |
| 149 | + |
| 150 | + def forward(self, input): |
| 151 | + if input.is_cuda and self.ngpu > 1: |
| 152 | + output = nn.parallel.data_parallel(self.main, input, range(self.ngpu)) |
| 153 | + else: |
| 154 | + output = self.main(input) |
| 155 | + return output |
| 156 | + |
| 157 | + |
| 158 | +netG = Generator(ngpu).to(device) |
| 159 | +netG.apply(weights_init) |
| 160 | +if opt.netG != '': |
| 161 | + netG.load_state_dict(torch.load(opt.netG)) |
| 162 | +print(netG) |
| 163 | + |
| 164 | + |
| 165 | +class Discriminator(nn.Module): |
| 166 | + def __init__(self, ngpu): |
| 167 | + super(Discriminator, self).__init__() |
| 168 | + self.ngpu = ngpu |
| 169 | + self.main = nn.Sequential( |
| 170 | + # input is (nc) x 64 x 64 |
| 171 | + nn.Conv2d(nc, ndf, 4, 2, 1, bias=False), |
| 172 | + nn.LeakyReLU(0.2, inplace=True), |
| 173 | + # state size. (ndf) x 32 x 32 |
| 174 | + nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False), |
| 175 | + nn.BatchNorm2d(ndf * 2), |
| 176 | + nn.LeakyReLU(0.2, inplace=True), |
| 177 | + # state size. (ndf*2) x 16 x 16 |
| 178 | + nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False), |
| 179 | + nn.BatchNorm2d(ndf * 4), |
| 180 | + nn.LeakyReLU(0.2, inplace=True), |
| 181 | + # state size. (ndf*4) x 8 x 8 |
| 182 | + nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False), |
| 183 | + nn.BatchNorm2d(ndf * 8), |
| 184 | + nn.LeakyReLU(0.2, inplace=True), |
| 185 | + # state size. (ndf*8) x 4 x 4 |
| 186 | + nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False), |
| 187 | + ) |
| 188 | + |
| 189 | + def forward(self, input): |
| 190 | + if input.is_cuda and self.ngpu > 1: |
| 191 | + output = nn.parallel.data_parallel(self.main, input, range(self.ngpu)) |
| 192 | + else: |
| 193 | + output = self.main(input) |
| 194 | + |
| 195 | + return output.view(-1, 1).squeeze(1) |
| 196 | + |
| 197 | + |
| 198 | +netD = Discriminator(ngpu).to(device) |
| 199 | +netD.apply(weights_init) |
| 200 | +if opt.netD != '': |
| 201 | + netD.load_state_dict(torch.load(opt.netD)) |
| 202 | +print(netD) |
| 203 | + |
| 204 | +criterion = nn.BCEWithLogitsLoss() |
| 205 | + |
| 206 | +fixed_noise = torch.randn(opt.batchSize, nz, 1, 1, device=device) |
| 207 | +real_label = 1 |
| 208 | +fake_label = 0 |
| 209 | + |
| 210 | +# setup optimizer |
| 211 | +optimizerD = optim.Adam(netD.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) |
| 212 | +optimizerG = optim.Adam(netG.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) |
| 213 | + |
| 214 | +[netD, netG], [optimizerD, optimizerG] = amp.initialize( |
| 215 | + [netD, netG], [optimizerD, optimizerG], opt_level=opt.opt_level, num_losses=3) |
| 216 | + |
| 217 | +for epoch in range(opt.niter): |
| 218 | + for i, data in enumerate(dataloader, 0): |
| 219 | + ############################ |
| 220 | + # (1) Update D network: maximize log(D(x)) + log(1 - D(G(z))) |
| 221 | + ########################### |
| 222 | + # train with real |
| 223 | + netD.zero_grad() |
| 224 | + real_cpu = data[0].to(device) |
| 225 | + batch_size = real_cpu.size(0) |
| 226 | + label = torch.full((batch_size,), real_label, device=device) |
| 227 | + |
| 228 | + output = netD(real_cpu) |
| 229 | + errD_real = criterion(output, label) |
| 230 | + with amp.scale_loss(errD_real, optimizerD, loss_id=0) as errD_real_scaled: |
| 231 | + errD_real_scaled.backward() |
| 232 | + D_x = output.mean().item() |
| 233 | + |
| 234 | + # train with fake |
| 235 | + noise = torch.randn(batch_size, nz, 1, 1, device=device) |
| 236 | + fake = netG(noise) |
| 237 | + label.fill_(fake_label) |
| 238 | + output = netD(fake.detach()) |
| 239 | + errD_fake = criterion(output, label) |
| 240 | + with amp.scale_loss(errD_fake, optimizerD, loss_id=1) as errD_fake_scaled: |
| 241 | + errD_fake_scaled.backward() |
| 242 | + D_G_z1 = output.mean().item() |
| 243 | + errD = errD_real + errD_fake |
| 244 | + optimizerD.step() |
| 245 | + |
| 246 | + ############################ |
| 247 | + # (2) Update G network: maximize log(D(G(z))) |
| 248 | + ########################### |
| 249 | + netG.zero_grad() |
| 250 | + label.fill_(real_label) # fake labels are real for generator cost |
| 251 | + output = netD(fake) |
| 252 | + errG = criterion(output, label) |
| 253 | + with amp.scale_loss(errG, optimizerG, loss_id=2) as errG_scaled: |
| 254 | + errG_scaled.backward() |
| 255 | + D_G_z2 = output.mean().item() |
| 256 | + optimizerG.step() |
| 257 | + |
| 258 | + print('[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f D(x): %.4f D(G(z)): %.4f / %.4f' |
| 259 | + % (epoch, opt.niter, i, len(dataloader), |
| 260 | + errD.item(), errG.item(), D_x, D_G_z1, D_G_z2)) |
| 261 | + if i % 100 == 0: |
| 262 | + vutils.save_image(real_cpu, |
| 263 | + '%s/real_samples.png' % opt.outf, |
| 264 | + normalize=True) |
| 265 | + fake = netG(fixed_noise) |
| 266 | + vutils.save_image(fake.detach(), |
| 267 | + '%s/amp_fake_samples_epoch_%03d.png' % (opt.outf, epoch), |
| 268 | + normalize=True) |
| 269 | + |
| 270 | + # do checkpointing |
| 271 | + torch.save(netG.state_dict(), '%s/netG_epoch_%d.pth' % (opt.outf, epoch)) |
| 272 | + torch.save(netD.state_dict(), '%s/netD_epoch_%d.pth' % (opt.outf, epoch)) |
| 273 | + |
| 274 | + |
0 commit comments