MAST has been tested on CentOS 7.6 with python >= 3.6. It supports both GPU and CPU inference. If you don't have a suitable device, try running our Colab demo.
Clone the repo:
git clone https://github.com/NJUHuoJing/MAST.git
Prepare the checkpoints:
download checkpoints in checkpoints.zip and unzip it into the root path of the project.
Install the requirements:
conda create -n mast-env python=3.6
conda activate mast-env
pip install -r requirements.txt
# If you want to use post smoothing as the same as PhotoWCT, then install the requirements below;
# You can also just skip it to use fast post smoothing, remember to change cfg.TEST.PHOTOREALISTIC.FAST_SMOOTHING=true
pip install -U setuptools
pip install cupy
pip install pynvrtc
First set MAST_CORE.ORTHOGONAL_CONSTRAINT=false in configs/config.yaml.
Then use the script test_artistic.py to generate the artistic stylized image by following
the command below:
# not use seg
python test_artistic.py --cfg_path configs/config.yaml --content_path data/default/content/4.png --style_path data/default/style/4.png --output_dir results/test/default
# use --content_seg_path and --style_seg_path to user edited style transfer
python test_artistic.py --cfg_path configs/config.yaml --content_path data/default/content/4.png --style_path data/default/style/4.png --output_dir results/test/default --content_seg_path data/default/content_segmentation/4.png --style_seg_path data/default/style_segmentation/4.png --seg_type labelme --resize 512
First set MAST_CORE.ORTHOGONAL_CONSTRAINT=true in configs/config.yaml.
Then use the script test_photorealistic.py to generate the photo-realistic stylized image
by following the command below:
# not use seg
python test_photorealistic.py --cfg_path configs/config.yaml --content_path data/photo_data/content/in1.png --style_path data/photo_data/style/tar1.png --output_dir results/test/photo --resize 512
# or use --content_seg_path and --style_seg_path to user edited style transfer
python test_photorealistic.py --cfg_path configs/config.yaml --content_path data/photo_data/content/in1.png --style_path data/photo_data/style/tar1.png --output_dir results/test/photo --content_seg_path data/photo_data/content_segmentation/in1.png --style_seg_path data/photo_data/style_segmentation/tar1.png --seg_type dpst --resize 512
We provide a gui for user-controllable artistic image stylization. Just use the command below to run test_gui.py
python test_gui.py --cfg_path configs/config.yaml
- You can use different colors to control the style transfer in different semantic areas.
- The button
ExpandandExpand numrespectively control whether to expand the selected semantic area and the degree of expansion.
See the gif demo for more details.
If you do not have a suitable environment to run this project then you could give Google Colab a try. It allows you to run the project in the cloud, free of charge. You may try our Colab demo using the notebook we have prepared: Colab Demo
@inproceedings{huo2021manifold,
author = {Jing Huo and Shiyin Jin and Wenbin Li and Jing Wu and Yu-Kun Lai and Yinghuan Shi and Yang Gao},
title = {Manifold Alignment for Semantically Aligned Style Transfer},
booktitle = {IEEE International Conference on Computer Vision},
pages = {14861-14869},
year = {2021}
}
- The post smoothing module is borrowed from PhotoWCT

