|
| 1 | +/* |
| 2 | + * Licensed to the Apache Software Foundation (ASF) under one or more |
| 3 | + * contributor license agreements. See the NOTICE file distributed with |
| 4 | + * this work for additional information regarding copyright ownership. |
| 5 | + * The ASF licenses this file to You under the Apache License, Version 2.0 |
| 6 | + * (the "License"); you may not use this file except in compliance with |
| 7 | + * the License. You may obtain a copy of the License at |
| 8 | + * |
| 9 | + * http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | + * |
| 11 | + * Unless required by applicable law or agreed to in writing, software |
| 12 | + * distributed under the License is distributed on an "AS IS" BASIS, |
| 13 | + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 14 | + * See the License for the specific language governing permissions and |
| 15 | + * limitations under the License. |
| 16 | + */ |
| 17 | + |
| 18 | +package org.apache.spark.mllib.clustering |
| 19 | + |
| 20 | +import breeze.linalg.{DenseVector => BreezeVector, DenseMatrix => BreezeMatrix} |
| 21 | +import breeze.linalg.{Transpose, det, inv} |
| 22 | +import org.apache.spark.rdd.RDD |
| 23 | +import org.apache.spark.mllib.linalg.{Matrices, Vector, Vectors} |
| 24 | +import org.apache.spark.{Accumulator, AccumulatorParam, SparkContext} |
| 25 | +import org.apache.spark.SparkContext.DoubleAccumulatorParam |
| 26 | + |
| 27 | +/** |
| 28 | + * Expectation-Maximization for multivariate Gaussian Mixture Models. |
| 29 | + * |
| 30 | + */ |
| 31 | +object GMMExpectationMaximization { |
| 32 | + /** |
| 33 | + * Trains a GMM using the given parameters |
| 34 | + * |
| 35 | + * @param data training points stores as RDD[Vector] |
| 36 | + * @param k the number of Gaussians in the mixture |
| 37 | + * @param maxIterations the maximum number of iterations to perform |
| 38 | + * @param delta change in log-likelihood at which convergence is considered achieved |
| 39 | + */ |
| 40 | + def train(data: RDD[Vector], k: Int, maxIterations: Int, delta: Double): GaussianMixtureModel = { |
| 41 | + new GMMExpectationMaximization().setK(k) |
| 42 | + .setMaxIterations(maxIterations) |
| 43 | + .setDelta(delta) |
| 44 | + .run(data) |
| 45 | + } |
| 46 | + |
| 47 | + /** |
| 48 | + * Trains a GMM using the given parameters |
| 49 | + * |
| 50 | + * @param data training points stores as RDD[Vector] |
| 51 | + * @param k the number of Gaussians in the mixture |
| 52 | + * @param maxIterations the maximum number of iterations to perform |
| 53 | + */ |
| 54 | + def train(data: RDD[Vector], k: Int, maxIterations: Int): GaussianMixtureModel = { |
| 55 | + new GMMExpectationMaximization().setK(k).setMaxIterations(maxIterations).run(data) |
| 56 | + } |
| 57 | + |
| 58 | + /** |
| 59 | + * Trains a GMM using the given parameters |
| 60 | + * |
| 61 | + * @param data training points stores as RDD[Vector] |
| 62 | + * @param k the number of Gaussians in the mixture |
| 63 | + */ |
| 64 | + def train(data: RDD[Vector], k: Int): GaussianMixtureModel = { |
| 65 | + new GMMExpectationMaximization().setK(k).run(data) |
| 66 | + } |
| 67 | +} |
| 68 | + |
| 69 | +/** |
| 70 | + * This class performs multivariate Gaussian expectation maximization. It will |
| 71 | + * maximize the log-likelihood for a mixture of k Gaussians, iterating until |
| 72 | + * the log-likelihood changes by less than delta, or until it has reached |
| 73 | + * the max number of iterations. |
| 74 | + */ |
| 75 | +class GMMExpectationMaximization private ( |
| 76 | + private var k: Int, |
| 77 | + private var delta: Double, |
| 78 | + private var maxIterations: Int) extends Serializable { |
| 79 | + |
| 80 | + // Type aliases for convenience |
| 81 | + private type DenseDoubleVector = BreezeVector[Double] |
| 82 | + private type DenseDoubleMatrix = BreezeMatrix[Double] |
| 83 | + |
| 84 | + // A default instance, 2 Gaussians, 100 iterations, 0.01 log-likelihood threshold |
| 85 | + def this() = this(2, 0.01, 100) |
| 86 | + |
| 87 | + /** Set the number of Gaussians in the mixture model. Default: 2 */ |
| 88 | + def setK(k: Int): this.type = { |
| 89 | + this.k = k |
| 90 | + this |
| 91 | + } |
| 92 | + |
| 93 | + /** Set the maximum number of iterations to run. Default: 100 */ |
| 94 | + def setMaxIterations(maxIterations: Int): this.type = { |
| 95 | + this.maxIterations = maxIterations |
| 96 | + this |
| 97 | + } |
| 98 | + |
| 99 | + /** |
| 100 | + * Set the largest change in log-likelihood at which convergence is |
| 101 | + * considered to have occurred. |
| 102 | + */ |
| 103 | + def setDelta(delta: Double): this.type = { |
| 104 | + this.delta = delta |
| 105 | + this |
| 106 | + } |
| 107 | + |
| 108 | + /** Machine precision value used to ensure matrix conditioning */ |
| 109 | + private val eps = math.pow(2.0, -52) |
| 110 | + |
| 111 | + /** Perform expectation maximization */ |
| 112 | + def run(data: RDD[Vector]): GaussianMixtureModel = { |
| 113 | + val ctx = data.sparkContext |
| 114 | + |
| 115 | + // we will operate on the data as breeze data |
| 116 | + val breezeData = data.map{ u => u.toBreeze.toDenseVector }.cache() |
| 117 | + |
| 118 | + // Get length of the input vectors |
| 119 | + val d = breezeData.first.length |
| 120 | + |
| 121 | + // For each Gaussian, we will initialize the mean as some random |
| 122 | + // point from the data. (This could be improved) |
| 123 | + val samples = breezeData.takeSample(true, k, scala.util.Random.nextInt) |
| 124 | + |
| 125 | + // C will be array of (weight, mean, covariance) tuples |
| 126 | + // we start with uniform weights, a random mean from the data, and |
| 127 | + // identity matrices for covariance |
| 128 | + var C = (0 until k).map(i => (1.0/k, |
| 129 | + samples(i), |
| 130 | + BreezeMatrix.eye[Double](d))).toArray |
| 131 | + |
| 132 | + val acc_w = new Array[Accumulator[Double]](k) |
| 133 | + val acc_mu = new Array[Accumulator[DenseDoubleVector]](k) |
| 134 | + val acc_sigma = new Array[Accumulator[DenseDoubleMatrix]](k) |
| 135 | + |
| 136 | + var llh = Double.MinValue // current log-likelihood |
| 137 | + var llhp = 0.0 // previous log-likelihood |
| 138 | + |
| 139 | + var i, iter = 0 |
| 140 | + do { |
| 141 | + // reset accumulators |
| 142 | + for(i <- 0 until k){ |
| 143 | + acc_w(i) = ctx.accumulator(0.0) |
| 144 | + acc_mu(i) = ctx.accumulator( |
| 145 | + BreezeVector.zeros[Double](d))(DenseDoubleVectorAccumulatorParam) |
| 146 | + acc_sigma(i) = ctx.accumulator( |
| 147 | + BreezeMatrix.zeros[Double](d,d))(DenseDoubleMatrixAccumulatorParam) |
| 148 | + } |
| 149 | + |
| 150 | + val log_likelihood = ctx.accumulator(0.0) |
| 151 | + |
| 152 | + // broadcast the current weights and distributions to all nodes |
| 153 | + val dists = ctx.broadcast((0 until k).map(i => |
| 154 | + new MultivariateGaussian(C(i)._2, C(i)._3)).toArray) |
| 155 | + val weights = ctx.broadcast((0 until k).map(i => C(i)._1).toArray) |
| 156 | + |
| 157 | + // calculate partial assignments for each sample in the data |
| 158 | + // (often referred to as the "E" step in literature) |
| 159 | + breezeData.foreach(x => { |
| 160 | + val p = (0 until k).map(i => |
| 161 | + eps + weights.value(i) * dists.value(i).pdf(x)).toArray |
| 162 | + val norm = sum(p) |
| 163 | + |
| 164 | + log_likelihood += math.log(norm) |
| 165 | + |
| 166 | + // accumulate weighted sums |
| 167 | + for(i <- 0 until k){ |
| 168 | + p(i) /= norm |
| 169 | + acc_w(i) += p(i) |
| 170 | + acc_mu(i) += x * p(i) |
| 171 | + acc_sigma(i) += x * new Transpose(x) * p(i) |
| 172 | + } |
| 173 | + }) |
| 174 | + |
| 175 | + // Collect the computed sums |
| 176 | + val W = (0 until k).map(i => acc_w(i).value).toArray |
| 177 | + val MU = (0 until k).map(i => acc_mu(i).value).toArray |
| 178 | + val SIGMA = (0 until k).map(i => acc_sigma(i).value).toArray |
| 179 | + |
| 180 | + // Create new distributions based on the partial assignments |
| 181 | + // (often referred to as the "M" step in literature) |
| 182 | + C = (0 until k).map(i => { |
| 183 | + val weight = W(i) / sum(W) |
| 184 | + val mu = MU(i) / W(i) |
| 185 | + val sigma = SIGMA(i) / W(i) - mu * new Transpose(mu) |
| 186 | + (weight, mu, sigma) |
| 187 | + }).toArray |
| 188 | + |
| 189 | + llhp = llh; // current becomes previous |
| 190 | + llh = log_likelihood.value // this is the freshly computed log-likelihood |
| 191 | + iter += 1 |
| 192 | + } while(iter < maxIterations && Math.abs(llh-llhp) > delta) |
| 193 | + |
| 194 | + // Need to convert the breeze matrices to MLlib matrices |
| 195 | + val weights = (0 until k).map(i => C(i)._1).toArray |
| 196 | + val means = (0 until k).map(i => Vectors.fromBreeze(C(i)._2)).toArray |
| 197 | + val sigmas = (0 until k).map(i => Matrices.fromBreeze(C(i)._3)).toArray |
| 198 | + new GaussianMixtureModel(weights, means, sigmas) |
| 199 | + } |
| 200 | + |
| 201 | + /** Sum the values in array of doubles */ |
| 202 | + private def sum(x : Array[Double]) : Double = { |
| 203 | + var s : Double = 0.0 |
| 204 | + x.foreach(u => s += u) |
| 205 | + s |
| 206 | + } |
| 207 | + |
| 208 | + /** AccumulatorParam for Dense Breeze Vectors */ |
| 209 | + private object DenseDoubleVectorAccumulatorParam extends AccumulatorParam[DenseDoubleVector] { |
| 210 | + def zero(initialVector : DenseDoubleVector) : DenseDoubleVector = { |
| 211 | + BreezeVector.zeros[Double](initialVector.length) |
| 212 | + } |
| 213 | + |
| 214 | + def addInPlace(a : DenseDoubleVector, b : DenseDoubleVector) : DenseDoubleVector = { |
| 215 | + a += b |
| 216 | + } |
| 217 | + } |
| 218 | + |
| 219 | + /** AccumulatorParam for Dense Breeze Matrices */ |
| 220 | + private object DenseDoubleMatrixAccumulatorParam extends AccumulatorParam[DenseDoubleMatrix] { |
| 221 | + def zero(initialVector : DenseDoubleMatrix) : DenseDoubleMatrix = { |
| 222 | + BreezeMatrix.zeros[Double](initialVector.rows, initialVector.cols) |
| 223 | + } |
| 224 | + |
| 225 | + def addInPlace(a : DenseDoubleMatrix, b : DenseDoubleMatrix) : DenseDoubleMatrix = { |
| 226 | + a += b |
| 227 | + } |
| 228 | + } |
| 229 | + |
| 230 | + /** |
| 231 | + * Utility class to implement the density function for multivariate Gaussian distribution. |
| 232 | + * Breeze provides this functionality, but it requires the Apache Commons Math library, |
| 233 | + * so this class is here so-as to not introduce a new dependency in Spark. |
| 234 | + */ |
| 235 | + private class MultivariateGaussian(val mu : DenseDoubleVector, val sigma : DenseDoubleMatrix) |
| 236 | + extends Serializable { |
| 237 | + private val sigma_inv_2 = inv(sigma) * -0.5 |
| 238 | + private val U = math.pow(2.0*math.Pi, -mu.length/2.0) * math.pow(det(sigma), -0.5) |
| 239 | + |
| 240 | + def pdf(x : DenseDoubleVector) : Double = { |
| 241 | + val delta = x - mu |
| 242 | + val delta_t = new Transpose(delta) |
| 243 | + U * math.exp(delta_t * sigma_inv_2 * delta) |
| 244 | + } |
| 245 | + } |
| 246 | +} |
0 commit comments