Skip to content

MCISLAB-Manifold-Learning/HypModalAlign

Repository files navigation

HypModalAlign

Performance Highlights([TOS classification])

Performance on Cifar100 and Sun

K-Shot Base Method Variant Cifar100 SUN
LA HCA MTA LA HCA MTA
1 MaPLe vanilla 68.75 4.65 50.60 63.98 25.15 50.31
+ProTeCt 69.33 48.10 83.36 64.29 50.45 76.73
+Ours 71.37 53.19 85.29 67.57 57.92 80.55
PromptSRC vanilla 72.48 14.36 51.91 70.58 42.14 57.19
+ProTeCt 73.07 49.54 85.16 70.61 55.52 78.73
+Ours 73.54 51.91 85.76 70.64 57.79 79.94
16 MaPLe vanilla 75.01 17.54 52.21 71.86 33.25 54.29
+ProTeCt 75.34 61.15 88.04 72.17 59.71 82.27
+Ours 77.92 69.38 90.89 75.47 68.67 86.02
PromptSRC vanilla 77.71 15.07 56.86 75.75 45.23 59.42
+ProTeCt 78.76 66.74 90.79 75.54 66.01 84.75
+Ours 78.90 68.47 91.12 76.54 69.18 86.20

Performance on ImageNet and Rare Species

K-Shot Base Method Variant ImageNet Rare Species
LA HCA MTA LA HCA MTA
1 MaPLe vanilla 68.91 2.97 48.16 41.55 5.09 44.75
+ProTeCt 66.16 20.44 85.18 39.92 13.22 70.04
+Ours 66.33 25.56 85.98 46.77 20.94 76.83
PromptSRC vanilla 68.82 4.46 54.10 45.39 6.72 44.72
+ProTeCt 68.43 20.36 85.63 44.56 20.36 74.42
+Ours 68.86 25.13 86.45 46.98 23.03 77.32
16 MaPLe vanilla 70.70 4.15 48.16 50.94 5.30 40.41
+ProTeCt 69.52 31.24 87.87 48.14 24.82 78.79
+Ours 71.41 43.79 88.78 69.96 53.65 87.27
PromptSRC vanilla 71.50 2.48 46.71 59.20 11.64 55.82
+ProTeCt 70.98 32.89 88.31 56.40 33.92 82.47
+Ours 71.67 42.26 89.64 67.38 50.77 87.60

Install environment

$ conda env create -f environment.yml
$ conda activate alitree

Download Dataset

After downloading the datasets using the links provided above, you can place them directly into the ./prepro/raw/ directory or create symbolic links to their locations. For the Rare Species dataset, an additional preprocessing step is required, which can be executed by running:

$ bash python ./prepro/scripts/extract_rarespecies.py

The dataset annotations are organized under the directory ./data/{datasetname}. Specifically:

  • The files gt_{split}.txt contain the data list and leaf-node level annotations.
  • The files tree.pyand tree_{subsample}.npy record the hierarchical information.
  • The files treecuts_{num}.pkl and treecuts_{num}_{subsample}.pkl are used for MTA evaluation.

Training

We have organized detailed training configurations in the ./configs/ directory, with the main configuration parameters explained in ./configs/few_shot/1-shot/cifar100/maple+ours.yml.

You can refer to the corrsponding training scripts provided in ./scripts/ to reproduce the results.For example, to reproduce the 1-shot Cifar100-100 results using MaPLe, you can execute the command

$ python train.py --config ./configs/few_shot/1-shot/cifar100/maple+ours.yml --trial 1

For experiments under different settings, simply specify the corresponding configuration file.

Evaluation

LA and HCA are automatically evaluated after training completes. To re-evaluate these metrics for a saved checkpoint, run reeval.py and specify the experiment directory, for example:

$ python reeval.py --folder ./runs/cifar100/maple/ViT-B_16/few_shot/1-shot/ours/trial_1 --bz {your_batch_size}

To evaluate MTA, use evalmta.py with the target experiment directory:

$ python evalmta.py --folder ./runs/cifar100/maple/ViT-B_16/few_shot/$1-shot/ours/trial_1 --bz ${your_batch_size}
               

Acknowledgements

Our work is based on the following codebases. Thanks for their brilliant contributions to the community!

Cite

If you find this repository useful, please consider cite our paper.

@misc{wei2025modalityalignmenttreesheterogeneous,
      title={Modality Alignment across Trees on Heterogeneous Hyperbolic Manifolds}, 
      author={Wu Wei and Xiaomeng Fan and Yuwei Wu and Zhi Gao and Pengxiang Li and Yunde Jia and Mehrtash Harandi},
      year={2025},
      eprint={2510.27391},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2510.27391}, 
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published