Skip to content

[NeurIPS 2023] Official implementation of the paper "A Comprehensive Benchmark for Neural Human Radiance Fields"

Notifications You must be signed in to change notification settings

KenkunLiu/HMNeRFBench_release

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

3 Commits
Β 
Β 
Β 
Β 

Repository files navigation

HMNeRFBench: A Comprehensive Benchmark for Neural Human Radiance Fields

This repository contains the implementation of the following paper:

A Comprehensive Benchmark for Neural Human Radiance Fields
Kenkun Liu12, Derong Jin2, Ailing Zeng1, Xiaoguang Han2, Lei Zhang1
1International Digital Economy Academy 2The Chinese University of Hong Kong, Shenzhen

Datasets

  1. ZJU-MoCap
  2. GeneBody
  3. HuMMan

Unifying Settings

Comparisons of recent NeRF-based human rendering methods on different aspects. In the column Dataset, ZM, PS, GB, HM, H36M, RP are ZJU-MoCap, People-Snapshot, GeneBody, HuMMan, Human3.6M, RenderPeople datasets, respectively. Views: train views for scene-specific methods and input views (*) for generalizable methods. Frames: train frames for scene-specific methods and input frames (*) for generalizable methods

Method Dataset Views Frames Generalizable Animatable
NeuralBody ZM, PS 4 100-300 ✘ βœ”
AniNeRF ZM, H36M 4 100-300 ✘ βœ”
ARAH ZM, H36M 4 300-400 ✘ βœ”
HumanNeRF ZM 1 500-600 ✘ βœ”
UV-Volume ZM, H36M 18 100 ✘ βœ”
MonoHuman ZM 1 500-600 ✘ βœ”
NHP ZM, AIST++ 3* 1* or 3* βœ” ✘
MPS-NeRF ZM, H36M, THuman 3* 1* βœ” βœ”
GP-NeRF ZM 3* 1* βœ” ✘
KeypointNeRF ZM 3* 1* βœ” ✘
GNR ZM, GB, RP 4* 1* βœ” ✘

Benchmarking Scene-specific Methods (Coming soon...)

Benchmarking Generalizable Methods (Coming soon...)

🀝 Citation

If you find this repository useful for your work, please consider citing it as follows:

@inproceedings{liu2023comprehensive,
        title={A Comprehensive Benchmark for Neural Human Radiance Fields},
        author={Liu, Kenkun and Jin, Derong and Zeng, Ailing and Han, Xiaoguang and Zhang, Lei},
        booktitle={Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track},
        year={2023}
      }

About

[NeurIPS 2023] Official implementation of the paper "A Comprehensive Benchmark for Neural Human Radiance Fields"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published