This is the official implementation of MEMBER (Mixture-of-Experts for Multi-BEhavior Recommendation)
(Accepted for ACM CIKM 2025 Full Research Paper)
- Paper: arXiv:2508.19507
- Accepted at: ACM CIKM 2025 (Full Research Paper)
- Online Appendix: See
MEMBER-Online Appendix.pdfin the root folder.
We use three widely adopted multi-behavior recommendation datasets:
- Tmall
- Taobao
- Jdata
cd data/{data_name}
python preprocess.pyWe report three evaluation results:
- Overall performance under the standard evaluation
- Performance on visited items
- Performance on unvisited items
cd METHOD- Tmall
python main.py --data_name tmall --con_s 0.1 --temp_s 0.6 --con_us 0.1 --temp_us 0.7 --gen 0.1 --lambda_s 0.6 --alpha 2- Taobao
python main.py --data_name taobao --con_s 0.1 --temp_s 0.8 --con_us 0.1 --temp_us 0.7 --gen 0.1 --lambda_us 0.6- Jdata
python main.py --data_name jdata --con_s 0.1 --temp_s 0.6 --con_us 0.01 --temp_us 1.0 --gen 0.01 --lambda_s 0.4 --lambda_us 0.4 --alpha 2If you find MEMBER useful, please cite our paper:
@inproceedings{kim2025self,
title = {A Self-Supervised Mixture of Experts Framework for Multi-behavior Recommendation},
author = {Kim, Kyungho and Kim, Sunwoo and Lee, Geon and Shin, Kijung},
booktitle = {CIKM},
year = {2025}
}