Skip to content

JAMESYJL/DeepMesh-v2

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 

Repository files navigation

DeepMesh-v2: Auto-Regressive Artist-Mesh Creation
With Reinforcement Learning

Junliang Ye1*, Ruowen Zhao1*, Zhengyi Wang1*, Yikai Wang1, Jun Zhu1,2†
*Equal Contribution.
Corresponding authors.
1Tsinghua University, 2ShengShu,

                   

Demo

All of the meshes above are generated by DeepMesh-v2. DeepMesh can generate high-quality meshes conditioned on the given point cloud by auto-regressive transformer.

Contents

Results

Table 1: Comparison of different methods on artist-mesh test dataset

Metric BPT TreeMeshGPT DeepMesh (1B) DeepMeshv2 (2B)
Success Rate 51% 38% 74% 95%
Average Faces 1920 6620 12235 8898
HD 0.29744 0.45681 0.17975 0.14191
CD 0.15089 0.23764 0.08474 0.07574

Table 2: Comparison of different methods on dense mesh test dataset

Metric BPT TreeMeshGPT DeepMesh (1B) DeepMeshv2 (2B)
Success Rate 45% 39% 69% 90%
Average Faces 2257 7571 15328 9063
HD 0.32891 0.44925 0.24112 0.16171
CD 0.29743 0.25639 0.14295 0.08184
Demo

Important Notes

Acknowledgement

Our code is based on these wonderful repos:

BibTeX

@article{zhao2025deepmesh,
  title={DeepMesh: Auto-Regressive Artist-mesh Creation with Reinforcement Learning},
  author={Zhao, Ruowen and Ye, Junliang and Wang, Zhengyi and Liu, Guangce and Chen, Yiwen and Wang, Yikai and Zhu, Jun},
  journal={arXiv preprint arXiv:2503.15265},
  year={2025}
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published