Skip to content
/ SimHMR Public

The official repository of the ACM MM2023 paper "SimHMR: A Simple Query-based Framework for Parameterized Human Mesh Reconstruction".

License

Notifications You must be signed in to change notification settings

Inso-13/SimHMR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SimHMR: Simple Human Mesh Recovery

License: Apache 2.0

SimHMR is a simple and effective framework for 3D human mesh recovery from single images. It combines the power of transformer architectures with SMPL body model to achieve state-of-the-art performance on various benchmarks.

Installation

Prerequisites

  • Python 3.8
  • CUDA 10.2+ (for GPU training)
  • Conda (recommended for environment management)

Option 1: Using Conda Environment (Recommended)

  1. Clone the repository:
git clone https://github.com/Inso-13/simhmr.git
cd simhmr
  1. Create and activate conda environment:
conda env create -f env.yml
conda activate human
  1. Install SimHMR:
pip install -e .

Option 2: Manual Installation

  1. Clone the repository:
git clone https://github.com//Inso-13/simhmr.git
cd simhmr
  1. Install PyTorch (CUDA 10.2):
pip install torch==1.8.0+cu111 torchvision==0.9.0+cu111 torchaudio==0.8.0 -f https://download.pytorch.org/whl/torch_stable.html
  1. Install other dependencies:
pip install -r requirements.txt
  1. Install SimHMR:
pip install -e .

Key Dependencies

  • PyTorch: 1.8.0
  • MMCV: 1.5.3
  • MMDetection: 2.27.0
  • MMPose: 0.28.1
  • SMPL-X: 0.1.28
  • PyTorch3D: 0.7.2
  • OpenCV: 4.7.0.68

Quick Start

Training

  1. Prepare your dataset and update the configuration file
  2. Start training:
python tools/train.py configs/simhmr/pw3d.py

Evaluation

python tools/test.py configs/simhmr/pw3d.py work_dirs/checkpoint.pth --eval mpjpe pa-mpjpe

Datasets

Please organise all datasets under the data/ directory following the MMHuman3D format. See MMHuman3D documentation for details.

Citation

If you find this work useful, please cite:

@inproceedings{huang2023simhmr,
  title={Simhmr: A simple query-based framework for parameterized human mesh reconstruction},
  author={Huang, Zihao and Shi, Min and Liu, Chengxin and Xian, Ke and Cao, Zhiguo},
  booktitle={Proceedings of the 31st ACM International Conference on Multimedia},
  pages={6918--6927},
  year={2023}
}

License

This project is licensed under the Apache License 2.0 - see the LICENSE file for details.

Acknowledgments

  • This work builds upon MMHuman3D
  • Thanks to the SMPL model authors
  • Thanks to all the dataset providers

Contributing

We welcome contributions! Please see our contributing guidelines for details.

About

The official repository of the ACM MM2023 paper "SimHMR: A Simple Query-based Framework for Parameterized Human Mesh Reconstruction".

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published