Code repository for paper: Mixture of Scope Experts at Test: Generalizing Deeper Graph Neural Networks with Shallow Variants
Ensure your environment meets the following dependencies (newer versions might also work):
- Python 3.11.4
- PyTorch 2.0.1
- torch_geometric 2.4.0
- torch-scatter 2.1.2
- torch-sparse 0.6.18
- hydra-core 1.3.2
- hydra-colorlog 1.2.0
- torchmetrics 0.11.4
- class_resolver 0.4.3
All configuration files are available in the conf directory to help reproduce the results reported in Table 1 (Main Results) and Table 7 (Leaderboard Comparison).
Note: You can adjust the logging verbosity by setting
log_level=INFO(default) for more detailed logs orlog_level=CRITICALfor minimal logging output.
-
0-hop MLP Scope Expert:
python run_gnn.py -m +exp_gnn=penn94_mlp log_logit=true
-
1-6 hop GNN Scope Experts:
python run_gnn.py -m +exp_gnn=penn94_gcn model.conv_layers=1,2,3,4,5,6 log_logit=true
python run_moscat.py +exp_moscat=penn94_gcn