Skip to content

Hydrapse/moscat

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Moscat: Mixture of Scope Experts at Test

Code repository for paper: Mixture of Scope Experts at Test: Generalizing Deeper Graph Neural Networks with Shallow Variants

⚙️ Setup

Ensure your environment meets the following dependencies (newer versions might also work):

  • Python 3.11.4
  • PyTorch 2.0.1
  • torch_geometric 2.4.0
  • torch-scatter 2.1.2
  • torch-sparse 0.6.18
  • hydra-core 1.3.2
  • hydra-colorlog 1.2.0
  • torchmetrics 0.11.4
  • class_resolver 0.4.3

🚀 Launching Moscat

All configuration files are available in the conf directory to help reproduce the results reported in Table 1 (Main Results) and Table 7 (Leaderboard Comparison).

Note: You can adjust the logging verbosity by setting log_level=INFO (default) for more detailed logs or log_level=CRITICAL for minimal logging output.

1. Train GNN Scope Experts (Scope 0 to 6)

  • 0-hop MLP Scope Expert:

    python run_gnn.py -m +exp_gnn=penn94_mlp log_logit=true  
  • 1-6 hop GNN Scope Experts:

    python run_gnn.py -m +exp_gnn=penn94_gcn model.conv_layers=1,2,3,4,5,6 log_logit=true

2. Train the Moscat Gating Model

python run_moscat.py +exp_moscat=penn94_gcn

About

[NeurIPS 2025] Mixture of experts framework for deeper GNNs

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages