Skip to content

Fra-Tsuna/flowmaps

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Dynamic Objects Relocalization in Changing Environments with Flow Matching

Francesco Argenziano1,# · Miguel Saavedra-Ruiz2,3,# · Sacha Morin2,3 · Daniele Nardi1 · Liam Paull2,3
1Department of Computer, Control and Management Engineering, Sapienza University of Rome, Italy
2DIRO, Université de Montréal, Montréal, QC, Canada · 3Mila - Quebec AI Institute, Montréal, QC, Canada
#Co‑first authors

arXiv license python Ubuntu 22.04 Ubuntu 24.04


Official code release for the paper Dynamic Objects Relocalization in Changing Environments with Flow Matching (code‑name: FlowMaps).

Table of Contents

Installation

# 1) Clone
git clone https://github.com/Fra-Tsuna/flowmaps
cd flowmaps

# 2) Create an environment (example with conda) and install deps
conda create -n flowmaps python=3.13 -y
conda activate flowmaps
pip install -r requirements.txt

Dataset Generation (FlowSim)

To generate datasets with FlowSim:

python3 data.py

This creates training/validation data according to config/config.yaml. We use a Hydra‑style syntax for overrides (key=value). You can edit config/config.yaml directly or pass overrides at the CLI.

python3 data.py n_env_train=200 n_env_val=20 max_timesteps=20 stochastic=true

Key parameters:

  • n_env_train, n_env_val: number of training and validation environments (respectively).
  • max_timesteps: time horizon of object trajectories.
  • stochastic: enable stochastic object behavior.
  • size: environment canvas size.
  • max_tables, min_each: number of furniture instances and minimum per type.
  • display_scale: visualization only; upscales the rendered image. Underlying data remain at size×size.

Training & Logging

Our project supports Weights & Biases logging.

  • Online (default below):
    python3 main.py wandb.mode=online wandb.project=YOUR_PROJECT wandb.entity=YOUR_ENTITY wandb.tags="[flowmaps,cdit]" experiment=cdit
  • Offline:
    python3 main.py wandb.mode=offline experiment=cdit

To train the MLP baseline, simply override experiment=mlp

Evaluation & Reproducing Results

After training, place your checkpoint file in ckpt/ and run:

python3 eval.py checkpoint_name=YOUR_CHECKPOINT_FILENAME

Citation

If you find this work useful, please cite the paper:

@article{argenziano2025dynamic,
  title={Dynamic Objects Relocalization in Changing Environments with Flow Matching},
  author={Argenziano, Francesco and Saavedra-Ruiz, Miguel and Morin, Sacha and Nardi, Daniele and Paull, Liam},
  journal={arXiv preprint arXiv:2509.16398},
  year={2025}
}

License

This repository is released under the MIT License. See LICENSE for details.

About

Official repository for the release of FlowMaps

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages