Skip to content

TypeError: sum() got an unexpected keyword argument 'level' #2202

@cwlee909

Description

@cwlee909

Is there an existing issue for this?

  • I have searched the existing issues

Bug description

When I use the testscript.py, It showed up the messenger : TypeError: sum() got an unexpected keyword argument 'level' .

Since I am not a programmer, I am not sure what happened here.

Operating System

operating system: Windows 10

DeepLabCut version

dlc version: 2.3.3

DeepLabCut mode

single animal

Device type

gpu (NVIDIA GeForce RTX 3060 Laptop GPU)

Steps To Reproduce

  1. Device: Windows 10 , Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz 2.59 GHz, 16 GB RAM, NVIDIA GeForce RTX 3060 Laptop GPU
  2. Environment:
    Create by:
conda create -n DLC python=3.8                
conda activate DLC                                
pip install --upgrade --force-reinstall 'deeplabcut[gui,tf,modelzoo]'
conda config --append channels conda-forge
conda install cudatoolkit=11.2 (https://www.tensorflow.org/install/source#gpu)
conda install cudnn=8.1
conda install ffmpeg==4.2.2
  1. Error shown when:
(DLC) PS C:\Users\user\Desktop\DeepLabCut-main> python testscript_cli.py
Loading DLC 2.3.3...
Imported DLC!
['C:\\Users\\user\\Desktop\\DeepLabCut-main\\examples\\Reaching-Mackenzie-2018-08-30\\videos\\reachingvideo1.avi']
On Windows/OSX tensorpack is not tested by default.
CREATING PROJECT
Created "C:\Users\user\Desktop\DeepLabCut-main\Testcore-Mackenzie-2023-04-11\videos"
Created "C:\Users\user\Desktop\DeepLabCut-main\Testcore-Mackenzie-2023-04-11\labeled-data"
Created "C:\Users\user\Desktop\DeepLabCut-main\Testcore-Mackenzie-2023-04-11\training-datasets"
Created "C:\Users\user\Desktop\DeepLabCut-main\Testcore-Mackenzie-2023-04-11\dlc-models"
Copying the videos
C:\Users\user\Desktop\DeepLabCut-main\Testcore-Mackenzie-2023-04-11\videos\reachingvideo1.avi
Generated "C:\Users\user\Desktop\DeepLabCut-main\Testcore-Mackenzie-2023-04-11\config.yaml"

A new project with name Testcore-Mackenzie-2023-04-11 is created at C:\Users\user\Desktop\DeepLabCut-main and a configurable file (config.yaml) is stored there. Change the parameters in this file to adapt to your project's needs.
 Once you have changed the configuration file, use the function 'extract_frames' to select frames for labeling.
. [OPTIONAL] Use the function 'add_new_videos' to add new videos to your project (at any stage).
EXTRACTING FRAMES
Config file read successfully.
Extracting frames based on kmeans ...
Kmeans-quantization based extracting of frames from 0.0  seconds to 8.53  seconds.
Extracting and downsampling... 256  frames from the video.
256it [00:01, 164.30it/s]
Kmeans clustering ... (this might take a while)
C:\Users\user\anaconda3\envs\DLC\lib\site-packages\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 3 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning
  warnings.warn(
Frames were successfully extracted, for the videos listed in the config.yaml file.

You can now label the frames using the function 'label_frames' (Note, you should label frames extracted from diverse videos (and many videos; we do not recommend training on single videos!)).
CREATING SOME LABELS FOR THE FRAMES
Plot labels...
Creating images with labels by Mackenzie.
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 5/5 [00:01<00:00,  4.57it/s]
If all the labels are ok, then use the function 'create_training_dataset' to create the training dataset!
CREATING TRAININGSET
Downloading a ImageNet-pretrained model from http://download.tensorflow.org/models/resnet_v1_50_2016_08_28.tar.gz....
The training dataset is successfully created. Use the function 'train_network' to start training. Happy training!
CHANGING training parameters to end quickly!
TRAIN
Selecting single-animal trainer
Config:
{'all_joints': [[0], [1], [2], [3]],
 'all_joints_names': ['bodypart1', 'bodypart2', 'bodypart3', 'objectA'],
 'alpha_r': 0.02,
 'apply_prob': 0.5,
 'batch_size': 1,
 'contrast': {'clahe': True,
              'claheratio': 0.1,
              'histeq': True,
              'histeqratio': 0.1},
 'convolution': {'edge': False,
                 'emboss': {'alpha': [0.0, 1.0], 'strength': [0.5, 1.5]},
                 'embossratio': 0.1,
                 'sharpen': False,
                 'sharpenratio': 0.3},
 'crop_pad': 0,
 'cropratio': 0.4,
 'dataset': 'training-datasets\\iteration-0\\UnaugmentedDataSet_TestcoreApr11\\Testcore_Mackenzie80shuffle1.mat',
 'dataset_type': 'default',
 'decay_steps': 30000,
 'deterministic': False,
 'display_iters': 2,
 'fg_fraction': 0.25,
 'global_scale': 0.8,
 'init_weights': 'C:\\Users\\user\\Desktop\\DeepLabCut-main\\deeplabcut\\pose_estimation_tensorflow\\models\\pretrained\\resnet_v1_50.ckpt',
 'intermediate_supervision': False,
 'intermediate_supervision_layer': 12,
 'location_refinement': True,
 'locref_huber_loss': True,
 'locref_loss_weight': 0.05,
 'locref_stdev': 7.2801,
 'log_dir': 'log',
 'lr_init': 0.0005,
 'max_input_size': 1500,
 'mean_pixel': [123.68, 116.779, 103.939],
 'metadataset': 'training-datasets\\iteration-0\\UnaugmentedDataSet_TestcoreApr11\\Documentation_data-Testcore_80shuffle1.pickle',
 'min_input_size': 64,
 'mirror': False,
 'multi_stage': False,
 'multi_step': [[0.001, 3]],
 'net_type': 'resnet_50',
 'num_joints': 4,
 'optimizer': 'sgd',
 'pairwise_huber_loss': False,
 'pairwise_predict': False,
 'partaffinityfield_predict': False,
 'pos_dist_thresh': 17,
 'project_path': 'C:\\Users\\user\\Desktop\\DeepLabCut-main\\Testcore-Mackenzie-2023-04-11',
 'regularize': False,
 'rotation': 25,
 'rotratio': 0.4,
 'save_iters': 3,
 'scale_jitter_lo': 0.5,
 'scale_jitter_up': 1.25,
 'scoremap_dir': 'test',
 'shuffle': True,
 'snapshot_prefix': 'C:\\Users\\user\\Desktop\\DeepLabCut-main\\Testcore-Mackenzie-2023-04-11\\dlc-models\\iteration-0\\TestcoreApr11-trainset80shuffle1\\train\\snapshot',
 'stride': 8.0,
 'weigh_negatives': False,
 'weigh_only_present_joints': False,
 'weigh_part_predictions': False,
 'weight_decay': 0.0001}
Batch Size is 1
C:\Users\user\anaconda3\envs\DLC\lib\site-packages\tensorflow\python\keras\engine\base_layer_v1.py:1694: UserWarning: `layer.apply` is deprecated and will be removed in a future version. Please use `layer.__call__` method instead.
  warnings.warn('`layer.apply` is deprecated and '
2023-04-11 16:05:44.486532: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX AVX2
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2023-04-11 16:05:44.877456: W tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.cc:42] Overriding orig_value setting because the TF_FORCE_GPU_ALLOW_GROWTH environment variable is set. Original config value was 0.
2023-04-11 16:05:44.877724: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1616] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 3475 MB memory:  -> device: 0, name: NVIDIA GeForce RTX 3060 Laptop GPU, pci bus id: 0000:01:00.0, compute capability: 8.6
Loading ImageNet-pretrained resnet_50
2023-04-11 16:05:45.317876: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1616] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 3475 MB memory:  -> device: 0, name: NVIDIA GeForce RTX 3060 Laptop GPU, pci bus id: 0000:01:00.0, compute capability: 8.6
2023-04-11 16:05:46.269875: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:354] MLIR V1 optimization pass is not enabled
Training parameter:
{'stride': 8.0, 'weigh_part_predictions': False, 'weigh_negatives': False, 'fg_fraction': 0.25, 'mean_pixel': [123.68, 116.779, 103.939], 'shuffle': True, 'snapshot_prefix': 'C:\\Users\\user\\Desktop\\DeepLabCut-main\\Testcore-Mackenzie-2023-04-11\\dlc-models\\iteration-0\\TestcoreApr11-trainset80shuffle1\\train\\snapshot', 'log_dir': 'log', 'global_scale': 0.8, 'location_refinement': True, 'locref_stdev': 7.2801, 'locref_loss_weight': 0.05, 'locref_huber_loss': True, 'optimizer': 'sgd', 'intermediate_supervision': False, 'intermediate_supervision_layer': 12, 'regularize': False, 'weight_decay': 0.0001, 'crop_pad': 0, 'scoremap_dir': 'test', 'batch_size': 1, 'dataset_type': 'default', 'deterministic': False, 'mirror': False, 'pairwise_huber_loss': False, 'weigh_only_present_joints': False, 'partaffinityfield_predict': False, 'pairwise_predict': False, 'all_joints': [[0], [1], [2], [3]], 'all_joints_names': ['bodypart1', 'bodypart2', 'bodypart3', 'objectA'], 'alpha_r': 0.02, 'apply_prob': 0.5, 'contrast': {'clahe': True, 'claheratio': 0.1, 'histeq': True, 'histeqratio': 0.1, 'gamma': False, 'sigmoid': False, 'log': False, 'linear': False}, 'convolution': {'edge': False, 'emboss': {'alpha': [0.0, 1.0], 'strength': [0.5, 1.5]}, 'embossratio': 0.1, 'sharpen': False, 'sharpenratio': 0.3}, 'cropratio': 0.4, 'dataset': 'training-datasets\\iteration-0\\UnaugmentedDataSet_TestcoreApr11\\Testcore_Mackenzie80shuffle1.mat', 'decay_steps': 30000, 'display_iters': 2, 'init_weights': 'C:\\Users\\user\\Desktop\\DeepLabCut-main\\deeplabcut\\pose_estimation_tensorflow\\models\\pretrained\\resnet_v1_50.ckpt', 'lr_init': 0.0005, 'max_input_size': 1500, 'metadataset': 'training-datasets\\iteration-0\\UnaugmentedDataSet_TestcoreApr11\\Documentation_data-Testcore_80shuffle1.pickle', 'min_input_size': 64, 'multi_stage': False, 'multi_step': [[0.001, 3]], 'net_type': 'resnet_50', 'num_joints': 4, 'pos_dist_thresh': 17, 'project_path': 'C:\\Users\\user\\Desktop\\DeepLabCut-main\\Testcore-Mackenzie-2023-04-11', 'rotation': 25, 'rotratio': 0.4, 'save_iters': 3, 'scale_jitter_lo': 0.5, 'scale_jitter_up': 1.25, 'covering': True, 'elastic_transform': True, 'motion_blur': True, 'motion_blur_params': {'k': 7, 'angle': (-90, 90)}}
Starting training....
2023-04-11 16:05:50.417576: I tensorflow/stream_executor/cuda/cuda_dnn.cc:384] Loaded cuDNN version 8100
2023-04-11 16:05:51.721011: I tensorflow/stream_executor/cuda/cuda_blas.cc:1614] TensorFloat-32 will be used for the matrix multiplication. This will only be logged once.
iteration: 2 loss: 1.1650 lr: 0.001
2023-04-11 16:05:57.360177: W tensorflow/core/kernels/queue_base.cc:277] _0_fifo_queue: Skipping cancelled enqueue attempt with queue not closed
Exception in thread Thread-2:
Traceback (most recent call last):
  File "C:\Users\user\anaconda3\envs\DLC\lib\site-packages\tensorflow\python\client\session.py", line 1378, in _do_call
    return fn(*args)
  File "C:\Users\user\anaconda3\envs\DLC\lib\site-packages\tensorflow\python\client\session.py", line 1361, in _run_fn
    return self._call_tf_sessionrun(options, feed_dict, fetch_list,
  File "C:\Users\user\anaconda3\envs\DLC\lib\site-packages\tensorflow\python\client\session.py", line 1454, in _call_tf_sessionrun
    return tf_session.TF_SessionRun_wrapper(self._session, options, feed_dict,
tensorflow.python.framework.errors_impl.CancelledError: Enqueue operation was cancelled
         [[{{node fifo_queue_enqueue}}]]

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "C:\Users\user\anaconda3\envs\DLC\lib\threading.py", line 932, in _bootstrap_inner
    self.run()
  File "C:\Users\user\anaconda3\envs\DLC\lib\threading.py", line 870, in run
    self._target(*self._args, **self._kwargs)
  File "C:\Users\user\Desktop\DeepLabCut-main\deeplabcut\pose_estimation_tensorflow\core\train.py", line 85, in load_and_enqueue
    sess.run(enqueue_op, feed_dict=food)
  File "C:\Users\user\anaconda3\envs\DLC\lib\site-packages\tensorflow\python\client\session.py", line 968, in run
    result = self._run(None, fetches, feed_dict, options_ptr,
  File "C:\Users\user\anaconda3\envs\DLC\lib\site-packages\tensorflow\python\client\session.py", line 1191, in _run
    results = self._do_run(handle, final_targets, final_fetches,
  File "C:\Users\user\anaconda3\envs\DLC\lib\site-packages\tensorflow\python\client\session.py", line 1371, in _do_run
    return self._do_call(_run_fn, feeds, fetches, targets, options,
  File "C:\Users\user\anaconda3\envs\DLC\lib\site-packages\tensorflow\python\client\session.py", line 1397, in _do_call
    raise type(e)(node_def, op, message)  # pylint: disable=no-value-for-parameter
tensorflow.python.framework.errors_impl.CancelledError: Graph execution error:

Detected at node 'fifo_queue_enqueue' defined at (most recent call last):
    File "testscript_cli.py", line 145, in <module>
      dlc.train_network(path_config_file)
    File "C:\Users\user\Desktop\DeepLabCut-main\deeplabcut\pose_estimation_tensorflow\training.py", line 212, in train_network
      train(
    File "C:\Users\user\Desktop\DeepLabCut-main\deeplabcut\pose_estimation_tensorflow\core\train.py", line 171, in train
      batch, enqueue_op, placeholders = setup_preloading(batch_spec)
    File "C:\Users\user\Desktop\DeepLabCut-main\deeplabcut\pose_estimation_tensorflow\core\train.py", line 71, in setup_preloading
      enqueue_op = q.enqueue(placeholders_list)
Node: 'fifo_queue_enqueue'
Enqueue operation was cancelled
         [[{{node fifo_queue_enqueue}}]]

Original stack trace for 'fifo_queue_enqueue':
  File "testscript_cli.py", line 145, in <module>
    dlc.train_network(path_config_file)
  File "C:\Users\user\Desktop\DeepLabCut-main\deeplabcut\pose_estimation_tensorflow\training.py", line 212, in train_network
    train(
  File "C:\Users\user\Desktop\DeepLabCut-main\deeplabcut\pose_estimation_tensorflow\core\train.py", line 171, in train
    batch, enqueue_op, placeholders = setup_preloading(batch_spec)
  File "C:\Users\user\Desktop\DeepLabCut-main\deeplabcut\pose_estimation_tensorflow\core\train.py", line 71, in setup_preloading
    enqueue_op = q.enqueue(placeholders_list)
  File "C:\Users\user\anaconda3\envs\DLC\lib\site-packages\tensorflow\python\ops\data_flow_ops.py", line 346, in enqueue
    return gen_data_flow_ops.queue_enqueue_v2(
  File "C:\Users\user\anaconda3\envs\DLC\lib\site-packages\tensorflow\python\ops\gen_data_flow_ops.py", line 4062, in queue_enqueue_v2
    _, _, _op, _outputs = _op_def_library._apply_op_helper(
  File "C:\Users\user\anaconda3\envs\DLC\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 797, in _apply_op_helper
    op = g._create_op_internal(op_type_name, inputs, dtypes=None,
  File "C:\Users\user\anaconda3\envs\DLC\lib\site-packages\tensorflow\python\framework\ops.py", line 3800, in _create_op_internal
    ret = Operation(

The network is now trained and ready to evaluate. Use the function 'evaluate_network' to evaluate the network.
EVALUATE
Config:
{'all_joints': [[0], [1], [2], [3]],
 'all_joints_names': ['bodypart1', 'bodypart2', 'bodypart3', 'objectA'],
 'batch_size': 1,
 'crop_pad': 0,
 'dataset': 'training-datasets\\iteration-0\\UnaugmentedDataSet_TestcoreApr11\\Testcore_Mackenzie80shuffle1.mat',
 'dataset_type': 'imgaug',
 'deterministic': False,
 'fg_fraction': 0.25,
 'global_scale': 0.8,
 'init_weights': 'C:\\Users\\user\\Desktop\\DeepLabCut-main\\deeplabcut\\pose_estimation_tensorflow\\models\\pretrained\\resnet_v1_50.ckpt',
 'intermediate_supervision': False,
 'intermediate_supervision_layer': 12,
 'location_refinement': True,
 'locref_huber_loss': True,
 'locref_loss_weight': 1.0,
 'locref_stdev': 7.2801,
 'log_dir': 'log',
 'mean_pixel': [123.68, 116.779, 103.939],
 'mirror': False,
 'net_type': 'resnet_50',
 'num_joints': 4,
 'optimizer': 'sgd',
 'pairwise_huber_loss': True,
 'pairwise_predict': False,
 'partaffinityfield_predict': False,
 'regularize': False,
 'scoremap_dir': 'test',
 'shuffle': True,
 'snapshot_prefix': 'C:\\Users\\user\\Desktop\\DeepLabCut-main\\Testcore-Mackenzie-2023-04-11\\dlc-models\\iteration-0\\TestcoreApr11-trainset80shuffle1\\test\\snapshot',
 'stride': 8.0,
 'weigh_negatives': False,
 'weigh_only_present_joints': False,
 'weigh_part_predictions': False,
 'weight_decay': 0.0001}
Running  DLC_resnet50_TestcoreApr11shuffle1_3  with # of training iterations: 3
C:\Users\user\anaconda3\envs\DLC\lib\site-packages\tensorflow\python\keras\engine\base_layer_v1.py:1694: UserWarning: `layer.apply` is deprecated and will be removed in a future version. Please use `layer.__call__` method instead.
  warnings.warn('`layer.apply` is deprecated and '
2023-04-11 16:06:01.998741: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1616] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 3475 MB memory:  -> device: 0, name: NVIDIA GeForce RTX 3060 Laptop GPU, pci bus id: 0000:01:00.0, compute capability: 8.6
Running evaluation ...
5it [00:00,  5.56it/s]
Analysis is done and the results are stored (see evaluation-results) for snapshot:  snapshot-3
Results for 3  training iterations: 80 1 train error: 383.81 pixels. Test error: 453.36  pixels.
With pcutoff of 0.01  train error: 383.81 pixels. Test error: 453.36 pixels
Thereby, the errors are given by the average distances between the labels by DLC and the scorer.
Plotting...
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 5/5 [00:01<00:00,  4.10it/s]
The network is evaluated and the results are stored in the subdirectory 'evaluation_results'.
Please check the results, then choose the best model (snapshot) for prediction. You can update the config.yaml file with the appropriate index for the 'snapshotindex'.
Use the function 'analyze_video' to make predictions on new videos.
Otherwise, consider adding more labeled-data and retraining the network (see DeepLabCut workflow Fig 2, Nath 2019)
C:\Users\user\Desktop\DeepLabCut-main\Testcore-Mackenzie-2023-04-11\videos\reachingvideo1.avi
Export model...
Config:
{'all_joints': [[0], [1], [2], [3]],
 'all_joints_names': ['bodypart1', 'bodypart2', 'bodypart3', 'objectA'],
 'alpha_r': 0.02,
 'apply_prob': 0.5,
 'batch_size': 1,
 'contrast': {'clahe': True,
              'claheratio': 0.1,
              'histeq': True,
              'histeqratio': 0.1},
 'convolution': {'edge': False,
                 'emboss': {'alpha': [0.0, 1.0], 'strength': [0.5, 1.5]},
                 'embossratio': 0.1,
                 'sharpen': False,
                 'sharpenratio': 0.3},
 'crop_pad': 0,
 'cropratio': 0.4,
 'dataset': 'training-datasets\\iteration-0\\UnaugmentedDataSet_TestcoreApr11\\Testcore_Mackenzie80shuffle1.mat',
 'dataset_type': 'default',
 'decay_steps': 30000,
 'deterministic': False,
 'display_iters': 2,
 'fg_fraction': 0.25,
 'global_scale': 0.8,
 'init_weights': 'C:\\Users\\user\\Desktop\\DeepLabCut-main\\deeplabcut\\pose_estimation_tensorflow\\models\\pretrained\\resnet_v1_50.ckpt',
 'intermediate_supervision': False,
 'intermediate_supervision_layer': 12,
 'location_refinement': True,
 'locref_huber_loss': True,
 'locref_loss_weight': 0.05,
 'locref_stdev': 7.2801,
 'log_dir': 'log',
 'lr_init': 0.0005,
 'max_input_size': 1500,
 'mean_pixel': [123.68, 116.779, 103.939],
 'metadataset': 'training-datasets\\iteration-0\\UnaugmentedDataSet_TestcoreApr11\\Documentation_data-Testcore_80shuffle1.pickle',
 'min_input_size': 64,
 'mirror': False,
 'multi_stage': False,
 'multi_step': [[0.001, 3]],
 'net_type': 'resnet_50',
 'num_joints': 4,
 'optimizer': 'sgd',
 'pairwise_huber_loss': False,
 'pairwise_predict': False,
 'partaffinityfield_predict': False,
 'pos_dist_thresh': 17,
 'project_path': 'C:\\Users\\user\\Desktop\\DeepLabCut-main\\Testcore-Mackenzie-2023-04-11',
 'regularize': False,
 'rotation': 25,
 'rotratio': 0.4,
 'save_iters': 3,
 'scale_jitter_lo': 0.5,
 'scale_jitter_up': 1.25,
 'scoremap_dir': 'test',
 'shuffle': True,
 'snapshot_prefix': 'C:\\Users\\user\\Desktop\\DeepLabCut-main\\Testcore-Mackenzie-2023-04-11\\dlc-models\\iteration-0\\TestcoreApr11-trainset80shuffle1\\train\\snapshot',
 'stride': 8.0,
 'weigh_negatives': False,
 'weigh_only_present_joints': False,
 'weigh_part_predictions': False,
 'weight_decay': 0.0001}
C:\Users\user\anaconda3\envs\DLC\lib\site-packages\tensorflow\python\keras\engine\base_layer_v1.py:1694: UserWarning: `layer.apply` is deprecated and will be removed in a future version. Please use `layer.__call__` method instead.
  warnings.warn('`layer.apply` is deprecated and '
2023-04-11 16:06:07.482592: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1616] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 3475 MB memory:  -> device: 0, name: NVIDIA GeForce RTX 3060 Laptop GPU, pci bus id: 0000:01:00.0, compute capability: 8.6
ALL DONE!!! - default/imgaug cases of DLCcore training and evaluation are functional (no extract outlier or refinement tested).
(DLC) PS C:\Users\user\Desktop\DeepLabCut-main> cd C:\Users\user\Desktop\DeepLabCut-main\examples
(DLC) PS C:\Users\user\Desktop\DeepLabCut-main\examples> python testscript.py
Loading DLC 2.3.3...
Imported DLC!
On Windows/OSX tensorpack is not tested by default.
CREATING PROJECT
Created "C:\Users\user\Desktop\DeepLabCut-main\examples\TEST-Alex-2023-04-11\videos"
Created "C:\Users\user\Desktop\DeepLabCut-main\examples\TEST-Alex-2023-04-11\labeled-data"
Created "C:\Users\user\Desktop\DeepLabCut-main\examples\TEST-Alex-2023-04-11\training-datasets"
Created "C:\Users\user\Desktop\DeepLabCut-main\examples\TEST-Alex-2023-04-11\dlc-models"
Copying the videos
C:\Users\user\Desktop\DeepLabCut-main\examples\TEST-Alex-2023-04-11\videos\reachingvideo1.avi
Generated "C:\Users\user\Desktop\DeepLabCut-main\examples\TEST-Alex-2023-04-11\config.yaml"

A new project with name TEST-Alex-2023-04-11 is created at C:\Users\user\Desktop\DeepLabCut-main\examples and a configurable file (config.yaml) is stored there. Change the parameters in this file to adapt to your project's needs.
 Once you have changed the configuration file, use the function 'extract_frames' to select frames for labeling.
. [OPTIONAL] Use the function 'add_new_videos' to add new videos to your project (at any stage).
EXTRACTING FRAMES
Config file read successfully.
Extracting frames based on kmeans ...
Kmeans-quantization based extracting of frames from 0.0  seconds to 8.53  seconds.
Extracting and downsampling... 256  frames from the video.
256it [00:01, 177.05it/s]
Kmeans clustering ... (this might take a while)
C:\Users\user\anaconda3\envs\DLC\lib\site-packages\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 3 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning
  warnings.warn(
Frames were successfully extracted, for the videos listed in the config.yaml file.

You can now label the frames using the function 'label_frames' (Note, you should label frames extracted from diverse videos (and many videos; we do not recommend training on single videos!)).
CREATING-SOME LABELS FOR THE FRAMES
Plot labels...
Creating images with labels by Alex.
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 5/5 [00:01<00:00,  4.62it/s]
If all the labels are ok, then use the function 'create_training_dataset' to create the training dataset!
CREATING TRAININGSET
The training dataset is successfully created. Use the function 'train_network' to start training. Happy training!
CHANGING training parameters to end quickly!
TRAIN
Selecting single-animal trainer
Config:
{'all_joints': [[0], [1], [2], [3]],
 'all_joints_names': ['bodypart1', 'bodypart2', 'bodypart3', 'objectA'],
 'alpha_r': 0.02,
 'apply_prob': 0.5,
 'batch_size': 1,
 'contrast': {'clahe': True,
              'claheratio': 0.1,
              'histeq': True,
              'histeqratio': 0.1},
 'convolution': {'edge': False,
                 'emboss': {'alpha': [0.0, 1.0], 'strength': [0.5, 1.5]},
                 'embossratio': 0.1,
                 'sharpen': False,
                 'sharpenratio': 0.3},
 'crop_pad': 0,
 'cropratio': 0.4,
 'dataset': 'training-datasets\\iteration-0\\UnaugmentedDataSet_TESTApr11\\TEST_Alex80shuffle1.mat',
 'dataset_type': 'default',
 'decay_steps': 30000,
 'deterministic': False,
 'display_iters': 2,
 'fg_fraction': 0.25,
 'global_scale': 0.8,
 'init_weights': 'C:\\Users\\user\\anaconda3\\envs\\DLC\\lib\\site-packages\\deeplabcut\\pose_estimation_tensorflow\\models\\pretrained\\mobilenet_v2_0.35_224.ckpt',
 'intermediate_supervision': False,
 'intermediate_supervision_layer': 12,
 'location_refinement': True,
 'locref_huber_loss': True,
 'locref_loss_weight': 0.05,
 'locref_stdev': 7.2801,
 'log_dir': 'log',
 'lr_init': 0.0005,
 'max_input_size': 1500,
 'mean_pixel': [123.68, 116.779, 103.939],
 'metadataset': 'training-datasets\\iteration-0\\UnaugmentedDataSet_TESTApr11\\Documentation_data-TEST_80shuffle1.pickle',
 'min_input_size': 64,
 'mirror': False,
 'multi_stage': False,
 'multi_step': [[0.001, 5]],
 'net_type': 'mobilenet_v2_0.35',
 'num_joints': 4,
 'optimizer': 'sgd',
 'pairwise_huber_loss': False,
 'pairwise_predict': False,
 'partaffinityfield_predict': False,
 'pos_dist_thresh': 17,
 'project_path': 'C:\\Users\\user\\Desktop\\DeepLabCut-main\\examples\\TEST-Alex-2023-04-11',
 'regularize': False,
 'rotation': 25,
 'rotratio': 0.4,
 'save_iters': 5,
 'scale_jitter_lo': 0.5,
 'scale_jitter_up': 1.25,
 'scoremap_dir': 'test',
 'shuffle': True,
 'snapshot_prefix': 'C:\\Users\\user\\Desktop\\DeepLabCut-main\\examples\\TEST-Alex-2023-04-11\\dlc-models\\iteration-0\\TESTApr11-trainset80shuffle1\\train\\snapshot',
 'stride': 8.0,
 'weigh_negatives': False,
 'weigh_only_present_joints': False,
 'weigh_part_predictions': False,
 'weight_decay': 0.0001}
Batch Size is 1
C:\Users\user\anaconda3\envs\DLC\lib\site-packages\tensorflow\python\keras\engine\base_layer_v1.py:1694: UserWarning: `layer.apply` is deprecated and will be removed in a future version. Please use `layer.__call__` method instead.
  warnings.warn('`layer.apply` is deprecated and '
2023-04-11 16:07:37.717086: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX AVX2
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2023-04-11 16:07:38.137864: W tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.cc:42] Overriding orig_value setting because the TF_FORCE_GPU_ALLOW_GROWTH environment variable is set. Original config value was 0.
2023-04-11 16:07:38.137987: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1616] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 3475 MB memory:  -> device: 0, name: NVIDIA GeForce RTX 3060 Laptop GPU, pci bus id: 0000:01:00.0, compute capability: 8.6
Loading ImageNet-pretrained mobilenet_v2_0.35
2023-04-11 16:07:38.576534: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1616] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 3475 MB memory:  -> device: 0, name: NVIDIA GeForce RTX 3060 Laptop GPU, pci bus id: 0000:01:00.0, compute capability: 8.6
2023-04-11 16:07:39.524578: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:354] MLIR V1 optimization pass is not enabled
Training parameter:
{'stride': 8.0, 'weigh_part_predictions': False, 'weigh_negatives': False, 'fg_fraction': 0.25, 'mean_pixel': [123.68, 116.779, 103.939], 'shuffle': True, 'snapshot_prefix': 'C:\\Users\\user\\Desktop\\DeepLabCut-main\\examples\\TEST-Alex-2023-04-11\\dlc-models\\iteration-0\\TESTApr11-trainset80shuffle1\\train\\snapshot', 'log_dir': 'log', 'global_scale': 0.8, 'location_refinement': True, 'locref_stdev': 7.2801, 'locref_loss_weight': 0.05, 'locref_huber_loss': True, 'optimizer': 'sgd', 'intermediate_supervision': False, 'intermediate_supervision_layer': 12, 'regularize': False, 'weight_decay': 0.0001, 'crop_pad': 0, 'scoremap_dir': 'test', 'batch_size': 1, 'dataset_type': 'default', 'deterministic': False, 'mirror': False, 'pairwise_huber_loss': False, 'weigh_only_present_joints': False, 'partaffinityfield_predict': False, 'pairwise_predict': False, 'all_joints': [[0], [1], [2], [3]], 'all_joints_names': ['bodypart1', 'bodypart2', 'bodypart3', 'objectA'], 'alpha_r': 0.02, 'apply_prob': 0.5, 'contrast': {'clahe': True, 'claheratio': 0.1, 'histeq': True, 'histeqratio': 0.1, 'gamma': False, 'sigmoid': False, 'log': False, 'linear': False}, 'convolution': {'edge': False, 'emboss': {'alpha': [0.0, 1.0], 'strength': [0.5, 1.5]}, 'embossratio': 0.1, 'sharpen': False, 'sharpenratio': 0.3}, 'cropratio': 0.4, 'dataset': 'training-datasets\\iteration-0\\UnaugmentedDataSet_TESTApr11\\TEST_Alex80shuffle1.mat', 'decay_steps': 30000, 'display_iters': 2, 'init_weights': 'C:\\Users\\user\\anaconda3\\envs\\DLC\\lib\\site-packages\\deeplabcut\\pose_estimation_tensorflow\\models\\pretrained\\mobilenet_v2_0.35_224.ckpt', 'lr_init': 0.0005, 'max_input_size': 1500, 'metadataset': 'training-datasets\\iteration-0\\UnaugmentedDataSet_TESTApr11\\Documentation_data-TEST_80shuffle1.pickle', 'min_input_size': 64, 'multi_stage': False, 'multi_step': [[0.001, 5]], 'net_type': 'mobilenet_v2_0.35', 'num_joints': 4, 'pos_dist_thresh': 17, 'project_path': 'C:\\Users\\user\\Desktop\\DeepLabCut-main\\examples\\TEST-Alex-2023-04-11', 'rotation': 25, 'rotratio': 0.4, 'save_iters': 5, 'scale_jitter_lo': 0.5, 'scale_jitter_up': 1.25, 'covering': True, 'elastic_transform': True, 'motion_blur': True, 'motion_blur_params': {'k': 7, 'angle': (-90, 90)}}
Starting training....
2023-04-11 16:07:43.700166: I tensorflow/stream_executor/cuda/cuda_dnn.cc:384] Loaded cuDNN version 8100
2023-04-11 16:07:45.101920: I tensorflow/stream_executor/cuda/cuda_blas.cc:1614] TensorFloat-32 will be used for the matrix multiplication. This will only be logged once.
iteration: 2 loss: 1.0918 lr: 0.001
iteration: 4 loss: 0.7055 lr: 0.001
2023-04-11 16:07:46.359480: W tensorflow/core/kernels/queue_base.cc:277] _0_fifo_queue: Skipping cancelled enqueue attempt with queue not closed
Exception in thread Thread-2:
Traceback (most recent call last):
  File "C:\Users\user\anaconda3\envs\DLC\lib\site-packages\tensorflow\python\client\session.py", line 1378, in _do_call
    return fn(*args)
  File "C:\Users\user\anaconda3\envs\DLC\lib\site-packages\tensorflow\python\client\session.py", line 1361, in _run_fn
    return self._call_tf_sessionrun(options, feed_dict, fetch_list,
  File "C:\Users\user\anaconda3\envs\DLC\lib\site-packages\tensorflow\python\client\session.py", line 1454, in _call_tf_sessionrun
    return tf_session.TF_SessionRun_wrapper(self._session, options, feed_dict,
tensorflow.python.framework.errors_impl.CancelledError: Enqueue operation was cancelled
         [[{{node fifo_queue_enqueue}}]]

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "C:\Users\user\anaconda3\envs\DLC\lib\threading.py", line 932, in _bootstrap_inner
    self.run()
  File "C:\Users\user\anaconda3\envs\DLC\lib\threading.py", line 870, in run
    self._target(*self._args, **self._kwargs)
  File "C:\Users\user\anaconda3\envs\DLC\lib\site-packages\deeplabcut\pose_estimation_tensorflow\core\train.py", line 85, in load_and_enqueue
    sess.run(enqueue_op, feed_dict=food)
  File "C:\Users\user\anaconda3\envs\DLC\lib\site-packages\tensorflow\python\client\session.py", line 968, in run
    result = self._run(None, fetches, feed_dict, options_ptr,
  File "C:\Users\user\anaconda3\envs\DLC\lib\site-packages\tensorflow\python\client\session.py", line 1191, in _run
    results = self._do_run(handle, final_targets, final_fetches,
  File "C:\Users\user\anaconda3\envs\DLC\lib\site-packages\tensorflow\python\client\session.py", line 1371, in _do_run
    return self._do_call(_run_fn, feeds, fetches, targets, options,
  File "C:\Users\user\anaconda3\envs\DLC\lib\site-packages\tensorflow\python\client\session.py", line 1397, in _do_call
    raise type(e)(node_def, op, message)  # pylint: disable=no-value-for-parameter
tensorflow.python.framework.errors_impl.CancelledError: Graph execution error:

Detected at node 'fifo_queue_enqueue' defined at (most recent call last):
    File "testscript.py", line 177, in <module>
      deeplabcut.train_network(path_config_file)
    File "C:\Users\user\anaconda3\envs\DLC\lib\site-packages\deeplabcut\pose_estimation_tensorflow\training.py", line 212, in train_network
      train(
    File "C:\Users\user\anaconda3\envs\DLC\lib\site-packages\deeplabcut\pose_estimation_tensorflow\core\train.py", line 171, in train
      batch, enqueue_op, placeholders = setup_preloading(batch_spec)
    File "C:\Users\user\anaconda3\envs\DLC\lib\site-packages\deeplabcut\pose_estimation_tensorflow\core\train.py", line 71, in setup_preloading
      enqueue_op = q.enqueue(placeholders_list)
Node: 'fifo_queue_enqueue'
Enqueue operation was cancelled
         [[{{node fifo_queue_enqueue}}]]

Original stack trace for 'fifo_queue_enqueue':
  File "testscript.py", line 177, in <module>
    deeplabcut.train_network(path_config_file)
  File "C:\Users\user\anaconda3\envs\DLC\lib\site-packages\deeplabcut\pose_estimation_tensorflow\training.py", line 212, in train_network
    train(
  File "C:\Users\user\anaconda3\envs\DLC\lib\site-packages\deeplabcut\pose_estimation_tensorflow\core\train.py", line 171, in train
    batch, enqueue_op, placeholders = setup_preloading(batch_spec)
  File "C:\Users\user\anaconda3\envs\DLC\lib\site-packages\deeplabcut\pose_estimation_tensorflow\core\train.py", line 71, in setup_preloading
    enqueue_op = q.enqueue(placeholders_list)
  File "C:\Users\user\anaconda3\envs\DLC\lib\site-packages\tensorflow\python\ops\data_flow_ops.py", line 346, in enqueue
    return gen_data_flow_ops.queue_enqueue_v2(
  File "C:\Users\user\anaconda3\envs\DLC\lib\site-packages\tensorflow\python\ops\gen_data_flow_ops.py", line 4062, in queue_enqueue_v2
    _, _, _op, _outputs = _op_def_library._apply_op_helper(
  File "C:\Users\user\anaconda3\envs\DLC\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 797, in _apply_op_helper
    op = g._create_op_internal(op_type_name, inputs, dtypes=None,
  File "C:\Users\user\anaconda3\envs\DLC\lib\site-packages\tensorflow\python\framework\ops.py", line 3800, in _create_op_internal
    ret = Operation(

The network is now trained and ready to evaluate. Use the function 'evaluate_network' to evaluate the network.
EVALUATE
Config:
{'all_joints': [[0], [1], [2], [3]],
 'all_joints_names': ['bodypart1', 'bodypart2', 'bodypart3', 'objectA'],
 'batch_size': 1,
 'crop_pad': 0,
 'dataset': 'training-datasets\\iteration-0\\UnaugmentedDataSet_TESTApr11\\TEST_Alex80shuffle1.mat',
 'dataset_type': 'imgaug',
 'deterministic': False,
 'fg_fraction': 0.25,
 'global_scale': 0.8,
 'init_weights': 'C:\\Users\\user\\anaconda3\\envs\\DLC\\lib\\site-packages\\deeplabcut\\pose_estimation_tensorflow\\models\\pretrained\\mobilenet_v2_0.35_224.ckpt',
 'intermediate_supervision': False,
 'intermediate_supervision_layer': 12,
 'location_refinement': True,
 'locref_huber_loss': True,
 'locref_loss_weight': 1.0,
 'locref_stdev': 7.2801,
 'log_dir': 'log',
 'mean_pixel': [123.68, 116.779, 103.939],
 'mirror': False,
 'net_type': 'mobilenet_v2_0.35',
 'num_joints': 4,
 'optimizer': 'sgd',
 'pairwise_huber_loss': True,
 'pairwise_predict': False,
 'partaffinityfield_predict': False,
 'regularize': False,
 'scoremap_dir': 'test',
 'shuffle': True,
 'snapshot_prefix': 'C:\\Users\\user\\Desktop\\DeepLabCut-main\\examples\\TEST-Alex-2023-04-11\\dlc-models\\iteration-0\\TESTApr11-trainset80shuffle1\\test\\snapshot',
 'stride': 8.0,
 'weigh_negatives': False,
 'weigh_only_present_joints': False,
 'weigh_part_predictions': False,
 'weight_decay': 0.0001}
Running  DLC_mobnet_35_TESTApr11shuffle1_5  with # of training iterations: 5
C:\Users\user\anaconda3\envs\DLC\lib\site-packages\tensorflow\python\keras\engine\base_layer_v1.py:1694: UserWarning: `layer.apply` is deprecated and will be removed in a future version. Please use `layer.__call__` method instead.
  warnings.warn('`layer.apply` is deprecated and '
2023-04-11 16:07:51.405861: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1616] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 3475 MB memory:  -> device: 0, name: NVIDIA GeForce RTX 3060 Laptop GPU, pci bus id: 0000:01:00.0, compute capability: 8.6
Running evaluation ...
5it [00:00,  6.96it/s]
Analysis is done and the results are stored (see evaluation-results) for snapshot:  snapshot-5
Results for 5  training iterations: 80 1 train error: 321.32 pixels. Test error: 444.8  pixels.
With pcutoff of 0.01  train error: 321.32 pixels. Test error: 444.8 pixels
Thereby, the errors are given by the average distances between the labels by DLC and the scorer.
Plotting...
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 5/5 [00:01<00:00,  4.22it/s]
The network is evaluated and the results are stored in the subdirectory 'evaluation_results'.
Please check the results, then choose the best model (snapshot) for prediction. You can update the config.yaml file with the appropriate index for the 'snapshotindex'.
Use the function 'analyze_video' to make predictions on new videos.
Otherwise, consider adding more labeled-data and retraining the network (see DeepLabCut workflow Fig 2, Nath 2019)
CUT SHORT VIDEO AND ANALYZE (with dynamic cropping!)
ffmpeg version 4.2.2 Copyright (c) 2000-2019 the FFmpeg developers
  built with gcc 9.2.1 (GCC) 20200122
  configuration: --disable-static --enable-shared --enable-gpl --enable-version3 --enable-sdl2 --enable-fontconfig --enable-gnutls --enable-iconv --enable-libass --enable-libdav1d --enable-libbluray --enable-libfreetype --enable-libmp3lame --enable-libopencore-amrnb --enable-libopencore-amrwb --enable-libopenjpeg --enable-libopus --enable-libshine --enable-libsnappy --enable-libsoxr --enable-libtheora --enable-libtwolame --enable-libvpx --enable-libwavpack --enable-libwebp --enable-libx264 --enable-libx265 --enable-libxml2 --enable-libzimg --enable-lzma --enable-zlib --enable-gmp --enable-libvidstab --enable-libvorbis --enable-libvo-amrwbenc --enable-libmysofa --enable-libspeex --enable-libxvid --enable-libaom --enable-libmfx --enable-amf --enable-ffnvcodec --enable-cuvid --enable-d3d11va --enable-nvenc --enable-nvdec --enable-dxva2 --enable-avisynth --enable-libopenmpt
  libavutil      56. 31.100 / 56. 31.100
  libavcodec     58. 54.100 / 58. 54.100
  libavformat    58. 29.100 / 58. 29.100
  libavdevice    58.  8.100 / 58.  8.100
  libavfilter     7. 57.100 /  7. 57.100
  libswscale      5.  5.100 /  5.  5.100
  libswresample   3.  5.100 /  3.  5.100
  libpostproc    55.  5.100 / 55.  5.100
Input #0, avi, from 'C:\Users\user\Desktop\DeepLabCut-main\examples\Reaching-Mackenzie-2018-08-30\videos\reachingvideo1.avi':
  Duration: 00:00:08.53, start: 0.000000, bitrate: 12642 kb/s
    Stream #0:0: Video: mjpeg (Baseline) (MJPG / 0x47504A4D), yuvj420p(pc, bt470bg/unknown/unknown), 832x747 [SAR 1:1 DAR 832:747], 12682 kb/s, 30 fps, 30 tbr, 30 tbn, 30 tbc
    Metadata:
      title           : ImageJ AVI
Stream mapping:
  Stream #0:0 -> #0:0 (mjpeg (native) -> mpeg4 (native))
Press [q] to stop, [?] for help
[swscaler @ 0000019f4be01740] deprecated pixel format used, make sure you did set range correctly
Output #0, avi, to 'C:\Users\user\Desktop\DeepLabCut-main\examples\TEST-Alex-2023-04-11\videos\reachingvideo1short.avi':
  Metadata:
    ISFT            : Lavf58.29.100
    Stream #0:0: Video: mpeg4 (FMP4 / 0x34504D46), yuv420p, 832x747 [SAR 1:1 DAR 832:747], q=2-31, 200 kb/s, 30 fps, 30 tbn, 30 tbc
    Metadata:
      title           : ImageJ AVI
      encoder         : Lavc58.54.100 mpeg4
    Side data:
      cpb: bitrate max/min/avg: 0/0/200000 buffer size: 0 vbv_delay: -1
frame=   30 fps=0.0 q=31.0 Lsize=     236kB time=00:00:01.00 bitrate=1933.4kbits/s speed=10.1x
video:230kB audio:0kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: 2.772651%
Config:
{'all_joints': [[0], [1], [2], [3]],
 'all_joints_names': ['bodypart1', 'bodypart2', 'bodypart3', 'objectA'],
 'batch_size': 1,
 'crop_pad': 0,
 'dataset': 'training-datasets\\iteration-0\\UnaugmentedDataSet_TESTApr11\\TEST_Alex80shuffle1.mat',
 'dataset_type': 'imgaug',
 'deterministic': False,
 'fg_fraction': 0.25,
 'global_scale': 0.8,
 'init_weights': 'C:\\Users\\user\\anaconda3\\envs\\DLC\\lib\\site-packages\\deeplabcut\\pose_estimation_tensorflow\\models\\pretrained\\mobilenet_v2_0.35_224.ckpt',
 'intermediate_supervision': False,
 'intermediate_supervision_layer': 12,
 'location_refinement': True,
 'locref_huber_loss': True,
 'locref_loss_weight': 1.0,
 'locref_stdev': 7.2801,
 'log_dir': 'log',
 'mean_pixel': [123.68, 116.779, 103.939],
 'mirror': False,
 'net_type': 'mobilenet_v2_0.35',
 'num_joints': 4,
 'optimizer': 'sgd',
 'pairwise_huber_loss': True,
 'pairwise_predict': False,
 'partaffinityfield_predict': False,
 'regularize': False,
 'scoremap_dir': 'test',
 'shuffle': True,
 'snapshot_prefix': 'C:\\Users\\user\\Desktop\\DeepLabCut-main\\examples\\TEST-Alex-2023-04-11\\dlc-models\\iteration-0\\TESTApr11-trainset80shuffle1\\test\\snapshot',
 'stride': 8.0,
 'weigh_negatives': False,
 'weigh_only_present_joints': False,
 'weigh_part_predictions': False,
 'weight_decay': 0.0001}
Using snapshot-5 for model C:\Users\user\Desktop\DeepLabCut-main\examples\TEST-Alex-2023-04-11\dlc-models\iteration-0\TESTApr11-trainset80shuffle1
Starting analysis in dynamic cropping mode with parameters: (True, 0.1, 5)
Switching batchsize to 1, num_outputs (per animal) to 1 and TFGPUinference to False (all these features are not supported in this mode).
C:\Users\user\anaconda3\envs\DLC\lib\site-packages\tensorflow\python\keras\engine\base_layer_v1.py:1694: UserWarning: `layer.apply` is deprecated and will be removed in a future version. Please use `layer.__call__` method instead.
  warnings.warn('`layer.apply` is deprecated and '
2023-04-11 16:07:56.981875: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1616] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 3475 MB memory:  -> device: 0, name: NVIDIA GeForce RTX 3060 Laptop GPU, pci bus id: 0000:01:00.0, compute capability: 8.6
Starting to analyze %  C:\Users\user\Desktop\DeepLabCut-main\examples\TEST-Alex-2023-04-11\videos\reachingvideo1short.avi
Loading  C:\Users\user\Desktop\DeepLabCut-main\examples\TEST-Alex-2023-04-11\videos\reachingvideo1short.avi
Duration of video [s]:  1.0 , recorded with  30.0 fps!
Overall # of frames:  30  found with (before cropping) frame dimensions:  832 747
Starting to extract posture
100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 30/30 [00:01<00:00, 24.66it/s]
Saving results in C:\Users\user\Desktop\DeepLabCut-main\examples\TEST-Alex-2023-04-11\videos...
Saving csv poses!
The videos are analyzed. Now your research can truly start!
 You can create labeled videos with 'create_labeled_video'
If the tracking is not satisfactory for some videos, consider expanding the training set. You can use the function 'extract_outlier_frames' to extract a few representative outlier frames.
analyze again...
Config:
{'all_joints': [[0], [1], [2], [3]],
 'all_joints_names': ['bodypart1', 'bodypart2', 'bodypart3', 'objectA'],
 'batch_size': 1,
 'crop_pad': 0,
 'dataset': 'training-datasets\\iteration-0\\UnaugmentedDataSet_TESTApr11\\TEST_Alex80shuffle1.mat',
 'dataset_type': 'imgaug',
 'deterministic': False,
 'fg_fraction': 0.25,
 'global_scale': 0.8,
 'init_weights': 'C:\\Users\\user\\anaconda3\\envs\\DLC\\lib\\site-packages\\deeplabcut\\pose_estimation_tensorflow\\models\\pretrained\\mobilenet_v2_0.35_224.ckpt',
 'intermediate_supervision': False,
 'intermediate_supervision_layer': 12,
 'location_refinement': True,
 'locref_huber_loss': True,
 'locref_loss_weight': 1.0,
 'locref_stdev': 7.2801,
 'log_dir': 'log',
 'mean_pixel': [123.68, 116.779, 103.939],
 'mirror': False,
 'net_type': 'mobilenet_v2_0.35',
 'num_joints': 4,
 'optimizer': 'sgd',
 'pairwise_huber_loss': True,
 'pairwise_predict': False,
 'partaffinityfield_predict': False,
 'regularize': False,
 'scoremap_dir': 'test',
 'shuffle': True,
 'snapshot_prefix': 'C:\\Users\\user\\Desktop\\DeepLabCut-main\\examples\\TEST-Alex-2023-04-11\\dlc-models\\iteration-0\\TESTApr11-trainset80shuffle1\\test\\snapshot',
 'stride': 8.0,
 'weigh_negatives': False,
 'weigh_only_present_joints': False,
 'weigh_part_predictions': False,
 'weight_decay': 0.0001}
Using snapshot-5 for model C:\Users\user\Desktop\DeepLabCut-main\examples\TEST-Alex-2023-04-11\dlc-models\iteration-0\TESTApr11-trainset80shuffle1
C:\Users\user\anaconda3\envs\DLC\lib\site-packages\tensorflow\python\keras\engine\base_layer_v1.py:1694: UserWarning: `layer.apply` is deprecated and will be removed in a future version. Please use `layer.__call__` method instead.
  warnings.warn('`layer.apply` is deprecated and '
2023-04-11 16:08:01.322515: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1616] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 3475 MB memory:  -> device: 0, name: NVIDIA GeForce RTX 3060 Laptop GPU, pci bus id: 0000:01:00.0, compute capability: 8.6
Starting to analyze %  C:\Users\user\Desktop\DeepLabCut-main\examples\TEST-Alex-2023-04-11\videos\reachingvideo1short.avi
The videos are analyzed. Now your research can truly start!
 You can create labeled videos with 'create_labeled_video'
If the tracking is not satisfactory for some videos, consider expanding the training set. You can use the function 'extract_outlier_frames' to extract a few representative outlier frames.
CREATE VIDEO
Starting to process video: C:\Users\user\Desktop\DeepLabCut-main\examples\TEST-Alex-2023-04-11\videos\reachingvideo1short.avi
Loading C:\Users\user\Desktop\DeepLabCut-main\examples\TEST-Alex-2023-04-11\videos\reachingvideo1short.avi and data.
Duration of video [s]: 1.0, recorded with 30.0 fps!
Overall # of frames: 30 with cropped frame dimensions: 832 747
Generating frames and creating video.
100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 30/30 [00:06<00:00,  4.70it/s]
Labeled video C:\Users\user\Desktop\DeepLabCut-main\examples\TEST-Alex-2023-04-11\videos\reachingvideo1shortDLC_mobnet_35_TESTApr11shuffle1_5_labeled.mp4 successfully created.
Making plots
Loading  C:\Users\user\Desktop\DeepLabCut-main\examples\TEST-Alex-2023-04-11\videos\reachingvideo1short.avi and data.
Plots created! Please check the directory "plot-poses" within the video directory
EXTRACT OUTLIERS
Traceback (most recent call last):
  File "testscript.py", line 233, in <module>
    deeplabcut.extract_outlier_frames(
  File "C:\Users\user\anaconda3\envs\DLC\lib\site-packages\deeplabcut\refine_training_dataset\outlier_frames.py", line 408, in extract_outlier_frames
    sum_ = temp_dt.sum(axis=1, level=1)
  File "C:\Users\user\anaconda3\envs\DLC\lib\site-packages\pandas\core\generic.py", line 11519, in sum
    return NDFrame.sum(self, axis, skipna, numeric_only, min_count, **kwargs)
  File "C:\Users\user\anaconda3\envs\DLC\lib\site-packages\pandas\core\generic.py", line 11287, in sum
    return self._min_count_stat_function(
  File "C:\Users\user\anaconda3\envs\DLC\lib\site-packages\pandas\core\generic.py", line 11259, in _min_count_stat_function
    nv.validate_sum((), kwargs)
  File "C:\Users\user\anaconda3\envs\DLC\lib\site-packages\pandas\compat\numpy\function.py", line 82, in __call__
    validate_args_and_kwargs(
  File "C:\Users\user\anaconda3\envs\DLC\lib\site-packages\pandas\util\_validators.py", line 221, in validate_args_and_kwargs
    validate_kwargs(fname, kwargs, compat_args)
  File "C:\Users\user\anaconda3\envs\DLC\lib\site-packages\pandas\util\_validators.py", line 162, in validate_kwargs
    _check_for_invalid_keys(fname, kwargs, compat_args)
  File "C:\Users\user\anaconda3\envs\DLC\lib\site-packages\pandas\util\_validators.py", line 136, in _check_for_invalid_keys
    raise TypeError(f"{fname}() got an unexpected keyword argument '{bad_arg}'")
TypeError: sum() got an unexpected keyword argument 'level'

Relevant log output

As mentioned above.

Anything else?

No.

Code of Conduct

Metadata

Metadata

Assignees

Labels

No labels
No labels

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions