-
-
Notifications
You must be signed in to change notification settings - Fork 1.8k
Closed
Labels
Description
Is there an existing issue for this?
- I have searched the existing issues
Bug description
Would like an "all hands on deck" to this 👍 :
When running ./test/sh locally I find the following sets of errors:
- 3d isn't tested properly, and is passed over:
Imported DLC!
Traceback (most recent call last):
File "/Users/mwmathis/Documents/DeepLabCut/examples/testscript_3d.py", line 95, in <module>
config = glob.glob(os.path.join(basepath, "TEST*", "config.yaml"))[-1]
IndexError: list index out of range
- in the multi-animal test script, there are several issues; (1) ffmpeg issue with plots (which might be the source of the github failing builds, btw), and (2) data missing:
Details
Analyzing data...
3it [00:00, 3.07it/s]
Saving plots...
100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:05<00:00, 1.69s/it]
/bin/sh: ffmpeg: command not found
Analyzing video...
Config:
{'all_joints': [[0], [1], [2], [3], [4]],
'all_joints_names': ['bodypart1',
'bodypart2',
'bodypart3',
'corner1',
'corner2'],
'batch_size': 1,
'crop_pad': 0,
'dataset': 'training-datasets/iteration-0/UnaugmentedDataSet_multi_mouseOct9/multi_mouse_dlc_team80shuffle1.pickle',
'dataset_type': 'multi-animal-imgaug',
'deterministic': False,
'fg_fraction': 0.25,
'global_scale': 0.8,
'init_weights': '/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/deeplabcut/pose_estimation_tensorflow/models/pretrained/efficientnet-b0/model.ckpt',
'intermediate_supervision': False,
'intermediate_supervision_layer': 12,
'location_refinement': True,
'locref_huber_loss': True,
'locref_loss_weight': 1.0,
'locref_smooth': False,
'locref_stdev': 7.2801,
'log_dir': 'log',
'mean_pixel': [123.68, 116.779, 103.939],
'minconfidence': 0.01,
'mirror': False,
'multi_stage': False,
'net_type': 'efficientnet-b0',
'nmsradius': 5.0,
'num_idchannel': 3,
'num_joints': 5,
'num_limbs': 3,
'optimizer': 'sgd',
'paf_best': [1, 0],
'pairwise_huber_loss': True,
'pairwise_predict': False,
'partaffinityfield_graph': [[0, 1], [0, 2], [1, 2]],
'partaffinityfield_predict': True,
'regularize': False,
'scoremap_dir': 'test',
'shuffle': True,
'sigma': 1,
'snapshot_prefix': '/Users/mwmathis/Documents/DeepLabCut/examples/multi_mouse-dlc_team-2022-10-09/dlc-models/iteration-0/multi_mouseOct9-trainset80shuffle1/test/snapshot',
'stride': 8.0,
'weigh_negatives': False,
'weigh_only_present_joints': False,
'weigh_part_predictions': False,
'weight_decay': 0.0001}
Using snapshot-5 for model /Users/mwmathis/Documents/DeepLabCut/examples/multi_mouse-dlc_team-2022-10-09/dlc-models/iteration-0/multi_mouseOct9-trainset80shuffle1
Activating extracting of PAFs
No video(s) were found. Please check your paths and/or 'video_type'.
Video analyzed.
Create video with all detections...
Video created.
Convert detections to tracklets...
Config:
{'all_joints': [[0], [1], [2], [3], [4]],
'all_joints_names': ['bodypart1',
'bodypart2',
'bodypart3',
'corner1',
'corner2'],
'batch_size': 1,
'crop_pad': 0,
'dataset': 'training-datasets/iteration-0/UnaugmentedDataSet_multi_mouseOct9/multi_mouse_dlc_team80shuffle1.pickle',
'dataset_type': 'multi-animal-imgaug',
'deterministic': False,
'fg_fraction': 0.25,
'global_scale': 0.8,
'init_weights': '/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/deeplabcut/pose_estimation_tensorflow/models/pretrained/efficientnet-b0/model.ckpt',
'intermediate_supervision': False,
'intermediate_supervision_layer': 12,
'location_refinement': True,
'locref_huber_loss': True,
'locref_loss_weight': 1.0,
'locref_smooth': False,
'locref_stdev': 7.2801,
'log_dir': 'log',
'mean_pixel': [123.68, 116.779, 103.939],
'minconfidence': 0.01,
'mirror': False,
'multi_stage': False,
'net_type': 'efficientnet-b0',
'nmsradius': 5.0,
'num_idchannel': 3,
'num_joints': 5,
'num_limbs': 3,
'optimizer': 'sgd',
'paf_best': [1, 0],
'pairwise_huber_loss': True,
'pairwise_predict': False,
'partaffinityfield_graph': [[0, 1], [0, 2], [1, 2]],
'partaffinityfield_predict': True,
'regularize': False,
'scoremap_dir': 'test',
'shuffle': True,
'sigma': 1,
'snapshot_prefix': '/Users/mwmathis/Documents/DeepLabCut/examples/multi_mouse-dlc_team-2022-10-09/dlc-models/iteration-0/multi_mouseOct9-trainset80shuffle1/test/snapshot',
'stride': 8.0,
'weigh_negatives': False,
'weigh_only_present_joints': False,
'weigh_part_predictions': False,
'weight_decay': 0.0001}
Using snapshot-5 for model /Users/mwmathis/Documents/DeepLabCut/examples/multi_mouse-dlc_team-2022-10-09/dlc-models/iteration-0/multi_mouseOct9-trainset80shuffle1
No video(s) found. Please check your path!
Tracklets created...
No video(s) found. Please check your path!
Plotting trajectories...
No videos found. Make sure you passed a list of videos and that *videotype* is right.
Trajectory plotted.
Creating labeled video...
Labeled video created.
Filtering predictions...
No video(s) were found. Please check your paths and/or 'videotype'.
Predictions filtered.
Extracting outlier frames...
No suitable videos found in ['/Users/mwmathis/Documents/DeepLabCut/examples/multi_mouse-dlc_team-2022-10-09/videos/m3v1mp4short.mp4']
Outlier frames extracted.
RELABELING
Traceback (most recent call last):
File "/Users/mwmathis/Documents/DeepLabCut/examples/testscript_multianimal.py", line 232, in <module>
DF = pd.read_hdf(file, "df_with_missing")
File "/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/pandas/io/pytables.py", line 414, in read_hdf
raise FileNotFoundError(f"File {path_or_buf} does not exist")
FileNotFoundError: File /Users/mwmathis/Documents/DeepLabCut/examples/multi_mouse-dlc_team-2022-10-09/labeled-data/m3v1mp4short/machinelabels-iter0.h5 does not exist
Operating System
macOS 12.5.1, new conda env based on DEEPLABCUT_newGUI (see #1984 for build instructions).
DeepLabCut version
2.3rc1
from test.sh:
Loading DLC 2.3rc1...
Imported DLC!
DeepLabCut mode
single animal, multi-animal, 3d
Device type
CPU
Steps To Reproduce
- in conda env with latest 2.3rc1 installed, run
./test.sh
Relevant log output
Details
Loading DLC 2.3rc1...
Imported DLC!
On Windows/OSX tensorpack is not tested by default.
CREATING PROJECT
Created "/Users/mwmathis/Documents/DeepLabCut/examples/TEST-Alex-2022-10-09/videos"
Created "/Users/mwmathis/Documents/DeepLabCut/examples/TEST-Alex-2022-10-09/labeled-data"
Created "/Users/mwmathis/Documents/DeepLabCut/examples/TEST-Alex-2022-10-09/training-datasets"
Created "/Users/mwmathis/Documents/DeepLabCut/examples/TEST-Alex-2022-10-09/dlc-models"
Copying the videos
/Users/mwmathis/Documents/DeepLabCut/examples/TEST-Alex-2022-10-09/videos/reachingvideo1.avi
Generated "/Users/mwmathis/Documents/DeepLabCut/examples/TEST-Alex-2022-10-09/config.yaml"
A new project with name TEST-Alex-2022-10-09 is created at /Users/mwmathis/Documents/DeepLabCut/examples and a configurable file (config.yaml) is stored there. Change the parameters in this file to adapt to your project's needs.
Once you have changed the configuration file, use the function 'extract_frames' to select frames for labeling.
. [OPTIONAL] Use the function 'add_new_videos' to add new videos to your project (at any stage).
EXTRACTING FRAMES
Config file read successfully.
Extracting frames based on kmeans ...
Kmeans-quantization based extracting of frames from 0.0 seconds to 8.53 seconds.
Extracting and downsampling... 256 frames from the video.
256it [00:01, 149.29it/s]
Kmeans clustering ... (this might take a while)
Frames were successfully extracted, for the videos listed in the config.yaml file.
You can now label the frames using the function 'label_frames' (Note, you should label frames extracted from diverse videos (and many videos; we do not recommend training on single videos!)).
CREATING-SOME LABELS FOR THE FRAMES
Plot labels...
Creating images with labels by Alex.
100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 5/5 [00:01<00:00, 2.97it/s]
If all the labels are ok, then use the function 'create_training_dataset' to create the training dataset!
CREATING TRAININGSET
Downloading a ImageNet-pretrained model from http://download.tensorflow.org/models/resnet_v1_50_2016_08_28.tar.gz....
The training dataset is successfully created. Use the function 'train_network' to start training. Happy training!
CHANGING training parameters to end quickly!
TRAIN
Selecting single-animal trainer
Config:
{'all_joints': [[0], [1], [2], [3]],
'all_joints_names': ['bodypart1', 'bodypart2', 'bodypart3', 'objectA'],
'alpha_r': 0.02,
'apply_prob': 0.5,
'batch_size': 1,
'contrast': {'clahe': True,
'claheratio': 0.1,
'histeq': True,
'histeqratio': 0.1},
'convolution': {'edge': False,
'emboss': {'alpha': [0.0, 1.0], 'strength': [0.5, 1.5]},
'embossratio': 0.1,
'sharpen': False,
'sharpenratio': 0.3},
'crop_pad': 0,
'cropratio': 0.4,
'dataset': 'training-datasets/iteration-0/UnaugmentedDataSet_TESTOct9/TEST_Alex80shuffle1.mat',
'dataset_type': 'default',
'decay_steps': 30000,
'deterministic': False,
'display_iters': 2,
'fg_fraction': 0.25,
'global_scale': 0.8,
'init_weights': '/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/deeplabcut/pose_estimation_tensorflow/models/pretrained/resnet_v1_50.ckpt',
'intermediate_supervision': False,
'intermediate_supervision_layer': 12,
'location_refinement': True,
'locref_huber_loss': True,
'locref_loss_weight': 0.05,
'locref_stdev': 7.2801,
'log_dir': 'log',
'lr_init': 0.0005,
'max_input_size': 1500,
'mean_pixel': [123.68, 116.779, 103.939],
'metadataset': 'training-datasets/iteration-0/UnaugmentedDataSet_TESTOct9/Documentation_data-TEST_80shuffle1.pickle',
'min_input_size': 64,
'mirror': False,
'multi_stage': False,
'multi_step': [[0.001, 5]],
'net_type': 'resnet_50',
'num_joints': 4,
'optimizer': 'sgd',
'pairwise_huber_loss': False,
'pairwise_predict': False,
'partaffinityfield_predict': False,
'pos_dist_thresh': 17,
'project_path': '/Users/mwmathis/Documents/DeepLabCut/examples/TEST-Alex-2022-10-09',
'regularize': False,
'rotation': 25,
'rotratio': 0.4,
'save_iters': 5,
'scale_jitter_lo': 0.5,
'scale_jitter_up': 1.25,
'scoremap_dir': 'test',
'shuffle': True,
'snapshot_prefix': '/Users/mwmathis/Documents/DeepLabCut/examples/TEST-Alex-2022-10-09/dlc-models/iteration-0/TESTOct9-trainset80shuffle1/train/snapshot',
'stride': 8.0,
'weigh_negatives': False,
'weigh_only_present_joints': False,
'weigh_part_predictions': False,
'weight_decay': 0.0001}
Batch Size is 1
/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/tensorflow/python/keras/engine/base_layer_v1.py:1694: UserWarning: `layer.apply` is deprecated and will be removed in a future version. Please use `layer.__call__` method instead.
warnings.warn('`layer.apply` is deprecated and '
2022-10-09 16:15:10.800158: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
Loading ImageNet-pretrained resnet_50
2022-10-09 16:15:12.309192: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:354] MLIR V1 optimization pass is not enabled
Training parameter:
{'stride': 8.0, 'weigh_part_predictions': False, 'weigh_negatives': False, 'fg_fraction': 0.25, 'mean_pixel': [123.68, 116.779, 103.939], 'shuffle': True, 'snapshot_prefix': '/Users/mwmathis/Documents/DeepLabCut/examples/TEST-Alex-2022-10-09/dlc-models/iteration-0/TESTOct9-trainset80shuffle1/train/snapshot', 'log_dir': 'log', 'global_scale': 0.8, 'location_refinement': True, 'locref_stdev': 7.2801, 'locref_loss_weight': 0.05, 'locref_huber_loss': True, 'optimizer': 'sgd', 'intermediate_supervision': False, 'intermediate_supervision_layer': 12, 'regularize': False, 'weight_decay': 0.0001, 'crop_pad': 0, 'scoremap_dir': 'test', 'batch_size': 1, 'dataset_type': 'default', 'deterministic': False, 'mirror': False, 'pairwise_huber_loss': False, 'weigh_only_present_joints': False, 'partaffinityfield_predict': False, 'pairwise_predict': False, 'all_joints': [[0], [1], [2], [3]], 'all_joints_names': ['bodypart1', 'bodypart2', 'bodypart3', 'objectA'], 'alpha_r': 0.02, 'apply_prob': 0.5, 'contrast': {'clahe': True, 'claheratio': 0.1, 'histeq': True, 'histeqratio': 0.1, 'gamma': False, 'sigmoid': False, 'log': False, 'linear': False}, 'convolution': {'edge': False, 'emboss': {'alpha': [0.0, 1.0], 'strength': [0.5, 1.5]}, 'embossratio': 0.1, 'sharpen': False, 'sharpenratio': 0.3}, 'cropratio': 0.4, 'dataset': 'training-datasets/iteration-0/UnaugmentedDataSet_TESTOct9/TEST_Alex80shuffle1.mat', 'decay_steps': 30000, 'display_iters': 2, 'init_weights': '/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/deeplabcut/pose_estimation_tensorflow/models/pretrained/resnet_v1_50.ckpt', 'lr_init': 0.0005, 'max_input_size': 1500, 'metadataset': 'training-datasets/iteration-0/UnaugmentedDataSet_TESTOct9/Documentation_data-TEST_80shuffle1.pickle', 'min_input_size': 64, 'multi_stage': False, 'multi_step': [[0.001, 5]], 'net_type': 'resnet_50', 'num_joints': 4, 'pos_dist_thresh': 17, 'project_path': '/Users/mwmathis/Documents/DeepLabCut/examples/TEST-Alex-2022-10-09', 'rotation': 25, 'rotratio': 0.4, 'save_iters': 5, 'scale_jitter_lo': 0.5, 'scale_jitter_up': 1.25, 'covering': True, 'elastic_transform': True, 'motion_blur': True, 'motion_blur_params': {'k': 7, 'angle': (-90, 90)}}
Starting training....
iteration: 2 loss: 1.2213 lr: 0.001
iteration: 4 loss: 0.7012 lr: 0.001
2022-10-09 16:15:30.177725: W tensorflow/core/kernels/queue_base.cc:277] _0_fifo_queue: Skipping cancelled enqueue attempt with queue not closed
Exception in thread Thread-2:
Traceback (most recent call last):
File "/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/tensorflow/python/client/session.py", line 1378, in _do_call
return fn(*args)
File "/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/tensorflow/python/client/session.py", line 1361, in _run_fn
return self._call_tf_sessionrun(options, feed_dict, fetch_list,
File "/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/tensorflow/python/client/session.py", line 1454, in _call_tf_sessionrun
return tf_session.TF_SessionRun_wrapper(self._session, options, feed_dict,
tensorflow.python.framework.errors_impl.CancelledError: Enqueue operation was cancelled
[[{{node fifo_queue_enqueue}}]]
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/threading.py", line 980, in _bootstrap_inner
self.run()
File "/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/threading.py", line 917, in run
self._target(*self._args, **self._kwargs)
File "/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/deeplabcut/pose_estimation_tensorflow/core/train.py", line 83, in load_and_enqueue
sess.run(enqueue_op, feed_dict=food)
File "/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/tensorflow/python/client/session.py", line 968, in run
result = self._run(None, fetches, feed_dict, options_ptr,
File "/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/tensorflow/python/client/session.py", line 1191, in _run
results = self._do_run(handle, final_targets, final_fetches,
File "/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/tensorflow/python/client/session.py", line 1371, in _do_run
return self._do_call(_run_fn, feeds, fetches, targets, options,
File "/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/tensorflow/python/client/session.py", line 1397, in _do_call
raise type(e)(node_def, op, message) # pylint: disable=no-value-for-parameter
tensorflow.python.framework.errors_impl.CancelledError: Graph execution error:
Detected at node 'fifo_queue_enqueue' defined at (most recent call last):
File "/Users/mwmathis/Documents/DeepLabCut/examples/testscript.py", line 164, in <module>
deeplabcut.train_network(path_config_file)
File "/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/deeplabcut/pose_estimation_tensorflow/training.py", line 210, in train_network
train(
File "/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/deeplabcut/pose_estimation_tensorflow/core/train.py", line 168, in train
batch, enqueue_op, placeholders = setup_preloading(batch_spec)
File "/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/deeplabcut/pose_estimation_tensorflow/core/train.py", line 69, in setup_preloading
enqueue_op = q.enqueue(placeholders_list)
Node: 'fifo_queue_enqueue'
Enqueue operation was cancelled
[[{{node fifo_queue_enqueue}}]]
Original stack trace for 'fifo_queue_enqueue':
File "/Users/mwmathis/Documents/DeepLabCut/examples/testscript.py", line 164, in <module>
deeplabcut.train_network(path_config_file)
File "/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/deeplabcut/pose_estimation_tensorflow/training.py", line 210, in train_network
train(
File "/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/deeplabcut/pose_estimation_tensorflow/core/train.py", line 168, in train
batch, enqueue_op, placeholders = setup_preloading(batch_spec)
File "/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/deeplabcut/pose_estimation_tensorflow/core/train.py", line 69, in setup_preloading
enqueue_op = q.enqueue(placeholders_list)
File "/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/tensorflow/python/ops/data_flow_ops.py", line 346, in enqueue
return gen_data_flow_ops.queue_enqueue_v2(
File "/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/tensorflow/python/ops/gen_data_flow_ops.py", line 4063, in queue_enqueue_v2
_, _, _op, _outputs = _op_def_library._apply_op_helper(
File "/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/tensorflow/python/framework/op_def_library.py", line 797, in _apply_op_helper
op = g._create_op_internal(op_type_name, inputs, dtypes=None,
File "/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/tensorflow/python/framework/ops.py", line 3800, in _create_op_internal
ret = Operation(
The network is now trained and ready to evaluate. Use the function 'evaluate_network' to evaluate the network.
EVALUATE
Config:
{'all_joints': [[0], [1], [2], [3]],
'all_joints_names': ['bodypart1', 'bodypart2', 'bodypart3', 'objectA'],
'batch_size': 1,
'crop_pad': 0,
'dataset': 'training-datasets/iteration-0/UnaugmentedDataSet_TESTOct9/TEST_Alex80shuffle1.mat',
'dataset_type': 'imgaug',
'deterministic': False,
'fg_fraction': 0.25,
'global_scale': 0.8,
'init_weights': '/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/deeplabcut/pose_estimation_tensorflow/models/pretrained/resnet_v1_50.ckpt',
'intermediate_supervision': False,
'intermediate_supervision_layer': 12,
'location_refinement': True,
'locref_huber_loss': True,
'locref_loss_weight': 1.0,
'locref_stdev': 7.2801,
'log_dir': 'log',
'mean_pixel': [123.68, 116.779, 103.939],
'mirror': False,
'net_type': 'resnet_50',
'num_joints': 4,
'optimizer': 'sgd',
'pairwise_huber_loss': True,
'pairwise_predict': False,
'partaffinityfield_predict': False,
'regularize': False,
'scoremap_dir': 'test',
'shuffle': True,
'snapshot_prefix': '/Users/mwmathis/Documents/DeepLabCut/examples/TEST-Alex-2022-10-09/dlc-models/iteration-0/TESTOct9-trainset80shuffle1/test/snapshot',
'stride': 8.0,
'weigh_negatives': False,
'weigh_only_present_joints': False,
'weigh_part_predictions': False,
'weight_decay': 0.0001}
Running DLC_resnet50_TESTOct9shuffle1_5 with # of training iterations: 5
/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/tensorflow/python/keras/engine/base_layer_v1.py:1694: UserWarning: `layer.apply` is deprecated and will be removed in a future version. Please use `layer.__call__` method instead.
warnings.warn('`layer.apply` is deprecated and '
Running evaluation ...
5it [00:04, 1.13it/s]
Analysis is done and the results are stored (see evaluation-results) for snapshot: snapshot-5
Results for 5 training iterations: 80 1 train error: 413.96 pixels. Test error: 448.53 pixels.
With pcutoff of 0.01 train error: 413.96 pixels. Test error: 448.53 pixels
Thereby, the errors are given by the average distances between the labels by DLC and the scorer.
Plotting...
100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 5/5 [00:01<00:00, 2.55it/s]
The network is evaluated and the results are stored in the subdirectory 'evaluation_results'.
Please check the results, then choose the best model (snapshot) for prediction. You can update the config.yaml file with the appropriate index for the 'snapshotindex'.
Use the function 'analyze_video' to make predictions on new videos.
Otherwise, consider adding more labeled-data and retraining the network (see DeepLabCut workflow Fig 2, Nath 2019)
CUT SHORT VIDEO AND ANALYZE (with dynamic cropping!)
/bin/sh: ffmpeg: command not found
Config:
{'all_joints': [[0], [1], [2], [3]],
'all_joints_names': ['bodypart1', 'bodypart2', 'bodypart3', 'objectA'],
'batch_size': 1,
'crop_pad': 0,
'dataset': 'training-datasets/iteration-0/UnaugmentedDataSet_TESTOct9/TEST_Alex80shuffle1.mat',
'dataset_type': 'imgaug',
'deterministic': False,
'fg_fraction': 0.25,
'global_scale': 0.8,
'init_weights': '/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/deeplabcut/pose_estimation_tensorflow/models/pretrained/resnet_v1_50.ckpt',
'intermediate_supervision': False,
'intermediate_supervision_layer': 12,
'location_refinement': True,
'locref_huber_loss': True,
'locref_loss_weight': 1.0,
'locref_stdev': 7.2801,
'log_dir': 'log',
'mean_pixel': [123.68, 116.779, 103.939],
'mirror': False,
'net_type': 'resnet_50',
'num_joints': 4,
'optimizer': 'sgd',
'pairwise_huber_loss': True,
'pairwise_predict': False,
'partaffinityfield_predict': False,
'regularize': False,
'scoremap_dir': 'test',
'shuffle': True,
'snapshot_prefix': '/Users/mwmathis/Documents/DeepLabCut/examples/TEST-Alex-2022-10-09/dlc-models/iteration-0/TESTOct9-trainset80shuffle1/test/snapshot',
'stride': 8.0,
'weigh_negatives': False,
'weigh_only_present_joints': False,
'weigh_part_predictions': False,
'weight_decay': 0.0001}
Using snapshot-5 for model /Users/mwmathis/Documents/DeepLabCut/examples/TEST-Alex-2022-10-09/dlc-models/iteration-0/TESTOct9-trainset80shuffle1
Starting analysis in dynamic cropping mode with parameters: (True, 0.1, 5)
Switching batchsize to 1, num_outputs (per animal) to 1 and TFGPUinference to False (all these features are not supported in this mode).
/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/tensorflow/python/keras/engine/base_layer_v1.py:1694: UserWarning: `layer.apply` is deprecated and will be removed in a future version. Please use `layer.__call__` method instead.
warnings.warn('`layer.apply` is deprecated and '
No video(s) were found. Please check your paths and/or 'video_type'.
analyze again...
Config:
{'all_joints': [[0], [1], [2], [3]],
'all_joints_names': ['bodypart1', 'bodypart2', 'bodypart3', 'objectA'],
'batch_size': 1,
'crop_pad': 0,
'dataset': 'training-datasets/iteration-0/UnaugmentedDataSet_TESTOct9/TEST_Alex80shuffle1.mat',
'dataset_type': 'imgaug',
'deterministic': False,
'fg_fraction': 0.25,
'global_scale': 0.8,
'init_weights': '/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/deeplabcut/pose_estimation_tensorflow/models/pretrained/resnet_v1_50.ckpt',
'intermediate_supervision': False,
'intermediate_supervision_layer': 12,
'location_refinement': True,
'locref_huber_loss': True,
'locref_loss_weight': 1.0,
'locref_stdev': 7.2801,
'log_dir': 'log',
'mean_pixel': [123.68, 116.779, 103.939],
'mirror': False,
'net_type': 'resnet_50',
'num_joints': 4,
'optimizer': 'sgd',
'pairwise_huber_loss': True,
'pairwise_predict': False,
'partaffinityfield_predict': False,
'regularize': False,
'scoremap_dir': 'test',
'shuffle': True,
'snapshot_prefix': '/Users/mwmathis/Documents/DeepLabCut/examples/TEST-Alex-2022-10-09/dlc-models/iteration-0/TESTOct9-trainset80shuffle1/test/snapshot',
'stride': 8.0,
'weigh_negatives': False,
'weigh_only_present_joints': False,
'weigh_part_predictions': False,
'weight_decay': 0.0001}
Using snapshot-5 for model /Users/mwmathis/Documents/DeepLabCut/examples/TEST-Alex-2022-10-09/dlc-models/iteration-0/TESTOct9-trainset80shuffle1
/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/tensorflow/python/keras/engine/base_layer_v1.py:1694: UserWarning: `layer.apply` is deprecated and will be removed in a future version. Please use `layer.__call__` method instead.
warnings.warn('`layer.apply` is deprecated and '
No video(s) were found. Please check your paths and/or 'video_type'.
CREATE VIDEO
Making plots
No videos found. Make sure you passed a list of videos and that *videotype* is right.
EXTRACT OUTLIERS
No suitable videos found in ['/Users/mwmathis/Documents/DeepLabCut/examples/TEST-Alex-2022-10-09/videos/reachingvideo1short.avi']
No suitable videos found in ['/Users/mwmathis/Documents/DeepLabCut/examples/TEST-Alex-2022-10-09/videos/reachingvideo1short.avi']
RELABELING
Traceback (most recent call last):
File "/Users/mwmathis/Documents/DeepLabCut/examples/testscript.py", line 245, in <module>
DF = pd.read_hdf(file, "df_with_missing")
File "/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/pandas/io/pytables.py", line 414, in read_hdf
raise FileNotFoundError(f"File {path_or_buf} does not exist")
FileNotFoundError: File /Users/mwmathis/Documents/DeepLabCut/examples/TEST-Alex-2022-10-09/labeled-data/reachingvideo1short/machinelabels-iter0.h5 does not exist
2022-10-09 16:15:50.808057: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
Loading DLC 2.3rc1...
Imported DLC!
Traceback (most recent call last):
File "/Users/mwmathis/Documents/DeepLabCut/examples/testscript_3d.py", line 95, in <module>
config = glob.glob(os.path.join(basepath, "TEST*", "config.yaml"))[-1]
IndexError: list index out of range
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/Users/mwmathis/Documents/DeepLabCut/examples/testscript_3d.py", line 97, in <module>
raise RuntimeError("Please run the testscript.py first before testing for 3d")
RuntimeError: Please run the testscript.py first before testing for 3d
2022-10-09 16:15:57.497719: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
Loading DLC 2.3rc1...
Creating project...
Created "/Users/mwmathis/Documents/DeepLabCut/examples/multi_mouse-dlc_team-2022-10-09/videos"
Created "/Users/mwmathis/Documents/DeepLabCut/examples/multi_mouse-dlc_team-2022-10-09/labeled-data"
Created "/Users/mwmathis/Documents/DeepLabCut/examples/multi_mouse-dlc_team-2022-10-09/training-datasets"
Created "/Users/mwmathis/Documents/DeepLabCut/examples/multi_mouse-dlc_team-2022-10-09/dlc-models"
Copying the videos
/Users/mwmathis/Documents/DeepLabCut/examples/multi_mouse-dlc_team-2022-10-09/videos/m3v1mp4.mp4
Generated "/Users/mwmathis/Documents/DeepLabCut/examples/multi_mouse-dlc_team-2022-10-09/config.yaml"
A new project with name multi_mouse-dlc_team-2022-10-09 is created at /Users/mwmathis/Documents/DeepLabCut/examples and a configurable file (config.yaml) is stored there. Change the parameters in this file to adapt to your project's needs.
Once you have changed the configuration file, use the function 'extract_frames' to select frames for labeling.
. [OPTIONAL] Use the function 'add_new_videos' to add new videos to your project (at any stage).
Project created.
Editing config...
Config edited.
Extracting frames...
Config file read successfully.
Extracting frames based on kmeans ...
Kmeans-quantization based extracting of frames from 0.0 seconds to 77.67 seconds.
Extracting and downsampling... 2330 frames from the video.
2330it [00:07, 323.28it/s]
Kmeans clustering ... (this might take a while)
Frames were successfully extracted, for the videos listed in the config.yaml file.
You can now label the frames using the function 'label_frames' (Note, you should label frames extracted from diverse videos (and many videos; we do not recommend training on single videos!)).
Frames extracted.
Creating artificial data...
Artificial data created.
Checking labels...
Creating images with labels by dlc_team.
100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 6.66it/s]
If all the labels are ok, then use the function 'create_training_dataset' to create the training dataset!
Labels checked.
Creating train dataset...
Utilizing the following graph: [[0, 1], [0, 2], [1, 2]]
Downloading a ImageNet-pretrained model from https://storage.googleapis.com/cloud-tpu-checkpoints/efficientnet/ckptsaug/efficientnet-b0.tar.gz....
Creating training data for: Shuffle: 1 TrainFraction: 0.8
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 4/4 [00:00<00:00, 1824.01it/s]
The training dataset is successfully created. Use the function 'train_network' to start training. Happy training!
Train dataset created.
Editing pose config...
Pose config edited.
Training network...
Selecting multi-animal trainer
Config:
{'all_joints': [[0], [1], [2], [3], [4]],
'all_joints_names': ['bodypart1',
'bodypart2',
'bodypart3',
'corner1',
'corner2'],
'alpha_r': 0.02,
'apply_prob': 0.5,
'batch_size': 1,
'contrast': {'clahe': True,
'claheratio': 0.1,
'histeq': True,
'histeqratio': 0.1},
'convolution': {'edge': False,
'emboss': {'alpha': [0.0, 1.0], 'strength': [0.5, 1.5]},
'embossratio': 0.1,
'sharpen': False,
'sharpenratio': 0.3},
'crop_pad': 0,
'crop_sampling': 'hybrid',
'crop_size': [200, 200],
'cropratio': 0.4,
'dataset': 'training-datasets/iteration-0/UnaugmentedDataSet_multi_mouseOct9/multi_mouse_dlc_team80shuffle1.pickle',
'dataset_type': 'multi-animal-imgaug',
'decay_steps': 30000,
'deterministic': False,
'display_iters': 2,
'fg_fraction': 0.25,
'global_scale': 0.5,
'init_weights': '/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/deeplabcut/pose_estimation_tensorflow/models/pretrained/efficientnet-b0/model.ckpt',
'intermediate_supervision': False,
'intermediate_supervision_layer': 12,
'location_refinement': True,
'locref_huber_loss': True,
'locref_loss_weight': 0.05,
'locref_stdev': 7.2801,
'log_dir': 'log',
'lr_init': 0.0005,
'max_input_size': 1500,
'max_shift': 0.4,
'mean_pixel': [123.68, 116.779, 103.939],
'metadataset': 'training-datasets/iteration-0/UnaugmentedDataSet_multi_mouseOct9/Documentation_data-multi_mouse_80shuffle1.pickle',
'min_input_size': 64,
'mirror': False,
'multi_stage': False,
'multi_step': [[0.0001, 7500], [5e-05, 12000], [1e-05, 200000]],
'net_type': 'efficientnet-b0',
'num_idchannel': 3,
'num_joints': 5,
'num_limbs': 3,
'optimizer': 'adam',
'pafwidth': 20,
'pairwise_huber_loss': False,
'pairwise_loss_weight': 0.1,
'pairwise_predict': False,
'partaffinityfield_graph': [[0, 1], [0, 2], [1, 2]],
'partaffinityfield_predict': True,
'pos_dist_thresh': 17,
'pre_resize': [],
'project_path': '/Users/mwmathis/Documents/DeepLabCut/examples/multi_mouse-dlc_team-2022-10-09',
'regularize': False,
'rotation': 25,
'rotratio': 0.4,
'save_iters': 5,
'scale_jitter_lo': 0.5,
'scale_jitter_up': 1.25,
'scoremap_dir': 'test',
'shuffle': True,
'snapshot_prefix': '/Users/mwmathis/Documents/DeepLabCut/examples/multi_mouse-dlc_team-2022-10-09/dlc-models/iteration-0/multi_mouseOct9-trainset80shuffle1/train/snapshot',
'stride': 8.0,
'weigh_negatives': False,
'weigh_only_present_joints': False,
'weigh_part_predictions': False,
'weight_decay': 0.0001}
Activating limb prediction...
Batch Size is 1
Getting specs multi-animal-imgaug 3 5
/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/tensorflow/python/keras/engine/base_layer_v1.py:1694: UserWarning: `layer.apply` is deprecated and will be removed in a future version. Please use `layer.__call__` method instead.
warnings.warn('`layer.apply` is deprecated and '
2022-10-09 16:16:21.945126: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
Loading ImageNet-pretrained efficientnet-b0
2022-10-09 16:16:22.723005: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:354] MLIR V1 optimization pass is not enabled
Switching to cosine decay schedule with adam!
Max_iters overwritten as 5
Training parameters:
{'stride': 8.0, 'weigh_part_predictions': False, 'weigh_negatives': False, 'fg_fraction': 0.25, 'mean_pixel': [123.68, 116.779, 103.939], 'shuffle': True, 'snapshot_prefix': '/Users/mwmathis/Documents/DeepLabCut/examples/multi_mouse-dlc_team-2022-10-09/dlc-models/iteration-0/multi_mouseOct9-trainset80shuffle1/train/snapshot', 'log_dir': 'log', 'global_scale': 0.5, 'location_refinement': True, 'locref_stdev': 7.2801, 'locref_loss_weight': 0.05, 'locref_huber_loss': True, 'optimizer': 'adam', 'intermediate_supervision': False, 'intermediate_supervision_layer': 12, 'regularize': False, 'weight_decay': 0.0001, 'crop_pad': 0, 'scoremap_dir': 'test', 'batch_size': 1, 'dataset_type': 'multi-animal-imgaug', 'deterministic': False, 'mirror': False, 'pairwise_huber_loss': False, 'weigh_only_present_joints': False, 'partaffinityfield_predict': True, 'pairwise_predict': True, 'all_joints': [[0], [1], [2], [3], [4]], 'all_joints_names': ['bodypart1', 'bodypart2', 'bodypart3', 'corner1', 'corner2'], 'alpha_r': 0.02, 'apply_prob': 0.5, 'contrast': {'clahe': True, 'claheratio': 0.1, 'histeq': True, 'histeqratio': 0.1, 'gamma': False, 'sigmoid': False, 'log': False, 'linear': False}, 'convolution': {'edge': False, 'emboss': {'alpha': [0.0, 1.0], 'strength': [0.5, 1.5]}, 'embossratio': 0.1, 'sharpen': False, 'sharpenratio': 0.3}, 'crop_sampling': 'hybrid', 'crop_size': [200, 200], 'cropratio': 0.4, 'dataset': 'training-datasets/iteration-0/UnaugmentedDataSet_multi_mouseOct9/multi_mouse_dlc_team80shuffle1.pickle', 'decay_steps': 30000, 'display_iters': 2, 'init_weights': '/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/deeplabcut/pose_estimation_tensorflow/models/pretrained/efficientnet-b0/model.ckpt', 'lr_init': 0.0005, 'max_input_size': 1500, 'max_shift': 0.4, 'metadataset': 'training-datasets/iteration-0/UnaugmentedDataSet_multi_mouseOct9/Documentation_data-multi_mouse_80shuffle1.pickle', 'min_input_size': 64, 'multi_stage': False, 'multi_step': [[0.0001, 7500], [5e-05, 12000], [1e-05, 200000]], 'net_type': 'efficientnet-b0', 'num_idchannel': 3, 'num_joints': 5, 'num_limbs': 3, 'pafwidth': 20, 'pairwise_loss_weight': 0.1, 'partaffinityfield_graph': [[0, 1], [0, 2], [1, 2]], 'pos_dist_thresh': 17, 'pre_resize': [], 'project_path': '/Users/mwmathis/Documents/DeepLabCut/examples/multi_mouse-dlc_team-2022-10-09', 'rotation': 25, 'rotratio': 0.4, 'save_iters': 5, 'scale_jitter_lo': 0.5, 'scale_jitter_up': 1.25, 'use_batch_norm': False, 'use_drop_out': False}
Starting multi-animal training....
iteration: 2 loss: 1.2181 scmap loss: 0.9926 locref loss: 0.0333 limb loss: 0.1922 lr: 0.0005000000237487257
iteration: 4 loss: 0.3450 scmap loss: 0.2988 locref loss: 0.0110 limb loss: 0.0352 lr: 0.0005000000237487257
2022-10-09 16:16:32.490305: W tensorflow/core/kernels/queue_base.cc:277] _0_fifo_queue: Skipping cancelled enqueue attempt with queue not closed
Exception in thread Thread-2:
Traceback (most recent call last):
File "/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/tensorflow/python/client/session.py", line 1378, in _do_call
return fn(*args)
File "/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/tensorflow/python/client/session.py", line 1361, in _run_fn
return self._call_tf_sessionrun(options, feed_dict, fetch_list,
File "/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/tensorflow/python/client/session.py", line 1454, in _call_tf_sessionrun
return tf_session.TF_SessionRun_wrapper(self._session, options, feed_dict,
tensorflow.python.framework.errors_impl.CancelledError: Enqueue operation was cancelled
[[{{node fifo_queue_enqueue}}]]
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/threading.py", line 980, in _bootstrap_inner
self.run()
File "/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/threading.py", line 917, in run
self._target(*self._args, **self._kwargs)
File "/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/deeplabcut/pose_estimation_tensorflow/core/train.py", line 83, in load_and_enqueue
sess.run(enqueue_op, feed_dict=food)
File "/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/tensorflow/python/client/session.py", line 968, in run
result = self._run(None, fetches, feed_dict, options_ptr,
File "/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/tensorflow/python/client/session.py", line 1191, in _run
results = self._do_run(handle, final_targets, final_fetches,
File "/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/tensorflow/python/client/session.py", line 1371, in _do_run
return self._do_call(_run_fn, feeds, fetches, targets, options,
File "/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/tensorflow/python/client/session.py", line 1397, in _do_call
raise type(e)(node_def, op, message) # pylint: disable=no-value-for-parameter
tensorflow.python.framework.errors_impl.CancelledError: Graph execution error:
Detected at node 'fifo_queue_enqueue' defined at (most recent call last):
File "/Users/mwmathis/Documents/DeepLabCut/examples/testscript_multianimal.py", line 139, in <module>
deeplabcut.train_network(config_path, maxiters=N_ITER)
File "/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/deeplabcut/pose_estimation_tensorflow/training.py", line 197, in train_network
train(
File "/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/deeplabcut/pose_estimation_tensorflow/core/train_multianimal.py", line 66, in train
batch, enqueue_op, placeholders = setup_preloading(batch_spec)
File "/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/deeplabcut/pose_estimation_tensorflow/core/train.py", line 69, in setup_preloading
enqueue_op = q.enqueue(placeholders_list)
Node: 'fifo_queue_enqueue'
Enqueue operation was cancelled
[[{{node fifo_queue_enqueue}}]]
Original stack trace for 'fifo_queue_enqueue':
File "/Users/mwmathis/Documents/DeepLabCut/examples/testscript_multianimal.py", line 139, in <module>
deeplabcut.train_network(config_path, maxiters=N_ITER)
File "/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/deeplabcut/pose_estimation_tensorflow/training.py", line 197, in train_network
train(
File "/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/deeplabcut/pose_estimation_tensorflow/core/train_multianimal.py", line 66, in train
batch, enqueue_op, placeholders = setup_preloading(batch_spec)
File "/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/deeplabcut/pose_estimation_tensorflow/core/train.py", line 69, in setup_preloading
enqueue_op = q.enqueue(placeholders_list)
File "/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/tensorflow/python/ops/data_flow_ops.py", line 346, in enqueue
return gen_data_flow_ops.queue_enqueue_v2(
File "/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/tensorflow/python/ops/gen_data_flow_ops.py", line 4063, in queue_enqueue_v2
_, _, _op, _outputs = _op_def_library._apply_op_helper(
File "/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/tensorflow/python/framework/op_def_library.py", line 797, in _apply_op_helper
op = g._create_op_internal(op_type_name, inputs, dtypes=None,
File "/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/tensorflow/python/framework/ops.py", line 3800, in _create_op_internal
ret = Operation(
The network is now trained and ready to evaluate. Use the function 'evaluate_network' to evaluate the network.
Network trained.
Evaluating network...
Config:
{'all_joints': [[0], [1], [2], [3], [4]],
'all_joints_names': ['bodypart1',
'bodypart2',
'bodypart3',
'corner1',
'corner2'],
'batch_size': 1,
'crop_pad': 0,
'dataset': 'training-datasets/iteration-0/UnaugmentedDataSet_multi_mouseOct9/multi_mouse_dlc_team80shuffle1.pickle',
'dataset_type': 'multi-animal-imgaug',
'deterministic': False,
'fg_fraction': 0.25,
'global_scale': 0.8,
'init_weights': '/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/deeplabcut/pose_estimation_tensorflow/models/pretrained/efficientnet-b0/model.ckpt',
'intermediate_supervision': False,
'intermediate_supervision_layer': 12,
'location_refinement': True,
'locref_huber_loss': True,
'locref_loss_weight': 1.0,
'locref_smooth': False,
'locref_stdev': 7.2801,
'log_dir': 'log',
'mean_pixel': [123.68, 116.779, 103.939],
'minconfidence': 0.01,
'mirror': False,
'multi_stage': False,
'net_type': 'efficientnet-b0',
'nmsradius': 5.0,
'num_idchannel': 3,
'num_joints': 5,
'num_limbs': 3,
'optimizer': 'sgd',
'pairwise_huber_loss': True,
'pairwise_predict': False,
'partaffinityfield_graph': [[0, 1], [0, 2], [1, 2]],
'partaffinityfield_predict': True,
'regularize': False,
'scoremap_dir': 'test',
'shuffle': True,
'sigma': 1,
'snapshot_prefix': '/Users/mwmathis/Documents/DeepLabCut/examples/multi_mouse-dlc_team-2022-10-09/dlc-models/iteration-0/multi_mouseOct9-trainset80shuffle1/test/snapshot',
'stride': 8.0,
'weigh_negatives': False,
'weigh_only_present_joints': False,
'weigh_part_predictions': False,
'weight_decay': 0.0001}
Running DLC_effnet_b0_multi_mouseOct9shuffle1_5 with # of trainingiterations: 5
/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/tensorflow/python/keras/engine/base_layer_v1.py:1694: UserWarning: `layer.apply` is deprecated and will be removed in a future version. Please use `layer.__call__` method instead.
warnings.warn('`layer.apply` is deprecated and '
Activating extracting of PAFs
Network Evaluation underway...
5it [00:02, 2.23it/s]
Results for 5 training iterations, training fraction of 80, and shuffle 1:
Train error: 60.07 pixels. Test error: 51.39 pixels.
With pcutoff of 0.6:
Train error: 57.65 pixels. Test error: 60.39 pixels.
##########################################
Average Euclidean distance to GT per individual (in pixels; test-only)
individuals
individual1 60.393749
individual2 NaN
individual3 NaN
single NaN
Average Euclidean distance to GT per bodypart (in pixels; test-only)
bodyparts
bodypart1 NaN
bodypart2 NaN
bodypart3 60.393749
corner1 NaN
corner2 NaN
Done and results stored for snapshot: snapshot-5
Selecting best skeleton...
Graph 1|2
5it [00:00, 676.13it/s]
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 4/4 [00:00<00:00, 1013.73it/s]
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1546.00it/s]
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 1228.78it/s]
Graph 2|2
5it [00:00, 823.83it/s]
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 4/4 [00:00<00:00, 1293.24it/s]
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1053.85it/s]
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 2807.43it/s]
Network evaluated....
Extracting maps...
Config:
{'all_joints': [[0], [1], [2], [3], [4]],
'all_joints_names': ['bodypart1',
'bodypart2',
'bodypart3',
'corner1',
'corner2'],
'batch_size': 1,
'crop_pad': 0,
'dataset': 'training-datasets/iteration-0/UnaugmentedDataSet_multi_mouseOct9/multi_mouse_dlc_team80shuffle1.pickle',
'dataset_type': 'multi-animal-imgaug',
'deterministic': False,
'fg_fraction': 0.25,
'global_scale': 0.8,
'init_weights': '/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/deeplabcut/pose_estimation_tensorflow/models/pretrained/efficientnet-b0/model.ckpt',
'intermediate_supervision': False,
'intermediate_supervision_layer': 12,
'location_refinement': True,
'locref_huber_loss': True,
'locref_loss_weight': 1.0,
'locref_smooth': False,
'locref_stdev': 7.2801,
'log_dir': 'log',
'mean_pixel': [123.68, 116.779, 103.939],
'minconfidence': 0.01,
'mirror': False,
'multi_stage': False,
'net_type': 'efficientnet-b0',
'nmsradius': 5.0,
'num_idchannel': 3,
'num_joints': 5,
'num_limbs': 3,
'optimizer': 'sgd',
'paf_best': [1, 0],
'pairwise_huber_loss': True,
'pairwise_predict': False,
'partaffinityfield_graph': [[0, 1], [0, 2], [1, 2]],
'partaffinityfield_predict': True,
'regularize': False,
'scoremap_dir': 'test',
'shuffle': True,
'sigma': 1,
'snapshot_prefix': '/Users/mwmathis/Documents/DeepLabCut/examples/multi_mouse-dlc_team-2022-10-09/dlc-models/iteration-0/multi_mouseOct9-trainset80shuffle1/test/snapshot',
'stride': 8.0,
'weigh_negatives': False,
'weigh_only_present_joints': False,
'weigh_part_predictions': False,
'weight_decay': 0.0001}
/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/tensorflow/python/keras/engine/base_layer_v1.py:1694: UserWarning: `layer.apply` is deprecated and will be removed in a future version. Please use `layer.__call__` method instead.
warnings.warn('`layer.apply` is deprecated and '
Activating extracting of PAFs
Analyzing data...
3it [00:00, 3.07it/s]
Saving plots...
100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:05<00:00, 1.69s/it]
/bin/sh: ffmpeg: command not found
Analyzing video...
Config:
{'all_joints': [[0], [1], [2], [3], [4]],
'all_joints_names': ['bodypart1',
'bodypart2',
'bodypart3',
'corner1',
'corner2'],
'batch_size': 1,
'crop_pad': 0,
'dataset': 'training-datasets/iteration-0/UnaugmentedDataSet_multi_mouseOct9/multi_mouse_dlc_team80shuffle1.pickle',
'dataset_type': 'multi-animal-imgaug',
'deterministic': False,
'fg_fraction': 0.25,
'global_scale': 0.8,
'init_weights': '/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/deeplabcut/pose_estimation_tensorflow/models/pretrained/efficientnet-b0/model.ckpt',
'intermediate_supervision': False,
'intermediate_supervision_layer': 12,
'location_refinement': True,
'locref_huber_loss': True,
'locref_loss_weight': 1.0,
'locref_smooth': False,
'locref_stdev': 7.2801,
'log_dir': 'log',
'mean_pixel': [123.68, 116.779, 103.939],
'minconfidence': 0.01,
'mirror': False,
'multi_stage': False,
'net_type': 'efficientnet-b0',
'nmsradius': 5.0,
'num_idchannel': 3,
'num_joints': 5,
'num_limbs': 3,
'optimizer': 'sgd',
'paf_best': [1, 0],
'pairwise_huber_loss': True,
'pairwise_predict': False,
'partaffinityfield_graph': [[0, 1], [0, 2], [1, 2]],
'partaffinityfield_predict': True,
'regularize': False,
'scoremap_dir': 'test',
'shuffle': True,
'sigma': 1,
'snapshot_prefix': '/Users/mwmathis/Documents/DeepLabCut/examples/multi_mouse-dlc_team-2022-10-09/dlc-models/iteration-0/multi_mouseOct9-trainset80shuffle1/test/snapshot',
'stride': 8.0,
'weigh_negatives': False,
'weigh_only_present_joints': False,
'weigh_part_predictions': False,
'weight_decay': 0.0001}
Using snapshot-5 for model /Users/mwmathis/Documents/DeepLabCut/examples/multi_mouse-dlc_team-2022-10-09/dlc-models/iteration-0/multi_mouseOct9-trainset80shuffle1
Activating extracting of PAFs
No video(s) were found. Please check your paths and/or 'video_type'.
Video analyzed.
Create video with all detections...
Video created.
Convert detections to tracklets...
Config:
{'all_joints': [[0], [1], [2], [3], [4]],
'all_joints_names': ['bodypart1',
'bodypart2',
'bodypart3',
'corner1',
'corner2'],
'batch_size': 1,
'crop_pad': 0,
'dataset': 'training-datasets/iteration-0/UnaugmentedDataSet_multi_mouseOct9/multi_mouse_dlc_team80shuffle1.pickle',
'dataset_type': 'multi-animal-imgaug',
'deterministic': False,
'fg_fraction': 0.25,
'global_scale': 0.8,
'init_weights': '/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/deeplabcut/pose_estimation_tensorflow/models/pretrained/efficientnet-b0/model.ckpt',
'intermediate_supervision': False,
'intermediate_supervision_layer': 12,
'location_refinement': True,
'locref_huber_loss': True,
'locref_loss_weight': 1.0,
'locref_smooth': False,
'locref_stdev': 7.2801,
'log_dir': 'log',
'mean_pixel': [123.68, 116.779, 103.939],
'minconfidence': 0.01,
'mirror': False,
'multi_stage': False,
'net_type': 'efficientnet-b0',
'nmsradius': 5.0,
'num_idchannel': 3,
'num_joints': 5,
'num_limbs': 3,
'optimizer': 'sgd',
'paf_best': [1, 0],
'pairwise_huber_loss': True,
'pairwise_predict': False,
'partaffinityfield_graph': [[0, 1], [0, 2], [1, 2]],
'partaffinityfield_predict': True,
'regularize': False,
'scoremap_dir': 'test',
'shuffle': True,
'sigma': 1,
'snapshot_prefix': '/Users/mwmathis/Documents/DeepLabCut/examples/multi_mouse-dlc_team-2022-10-09/dlc-models/iteration-0/multi_mouseOct9-trainset80shuffle1/test/snapshot',
'stride': 8.0,
'weigh_negatives': False,
'weigh_only_present_joints': False,
'weigh_part_predictions': False,
'weight_decay': 0.0001}
Using snapshot-5 for model /Users/mwmathis/Documents/DeepLabCut/examples/multi_mouse-dlc_team-2022-10-09/dlc-models/iteration-0/multi_mouseOct9-trainset80shuffle1
No video(s) found. Please check your path!
Tracklets created...
No video(s) found. Please check your path!
Plotting trajectories...
No videos found. Make sure you passed a list of videos and that *videotype* is right.
Trajectory plotted.
Creating labeled video...
Labeled video created.
Filtering predictions...
No video(s) were found. Please check your paths and/or 'videotype'.
Predictions filtered.
Extracting outlier frames...
No suitable videos found in ['/Users/mwmathis/Documents/DeepLabCut/examples/multi_mouse-dlc_team-2022-10-09/videos/m3v1mp4short.mp4']
Outlier frames extracted.
RELABELING
Traceback (most recent call last):
File "/Users/mwmathis/Documents/DeepLabCut/examples/testscript_multianimal.py", line 232, in <module>
DF = pd.read_hdf(file, "df_with_missing")
File "/Users/mwmathis/opt/anaconda3/envs/DEEPLABCUT_newGUI/lib/python3.9/site-packages/pandas/io/pytables.py", line 414, in read_hdf
raise FileNotFoundError(f"File {path_or_buf} does not exist")
FileNotFoundError: File /Users/mwmathis/Documents/DeepLabCut/examples/multi_mouse-dlc_team-2022-10-09/labeled-data/m3v1mp4short/machinelabels-iter0.h5 does not exist
Anything else?
No response
Code of Conduct
- I agree to follow this project's Code of Conduct