Skip to content

Consistent3DSR/3DSR

Repository files navigation

Bridging Diffusion Models and 3D Representations:

A 3D Consistent Super-Resolution Framework

Yi-Ting Chen · Ting-Hsuan Liao · Pengsheng Guo · Alexander Schwing · Jia-Bin Huang

ICCV 2025

Logo

We introduce a Super Resolution (3DSR), a novel 3D Gaussian-splatting-based super-resolution framework that leverages off-the-shelf diffusion-based 2D super-resolution models. 3DSR encourages 3D consistency across views via the use of an explicit 3D Gaussian-splatting-based scene representation.


Installation

Dependencies

  • Pytorch == 1.13.1
  • CUDA == 11.7
  • pytorch-lightning==1.4.2
  • xformers == 0.0.16 (Optional)

Clone the repository and create an anaconda environment using

git clone [email protected]:Consistent3DSR/3DSR.git
cd 3DSR

conda create -y -n 3dsr python=3.8
conda activate 3dsr

pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu117
conda install nvidia/label/cuda-11.7.1::cuda-toolkit

pip install -r requirements.txt

pip install submodules/diff-gaussian-rasterization
pip install submodules/simple-knn/

cd third_parties
pip install -e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
pip install -e git+https://github.com/openai/CLIP.git@main#egg=clip
pip install -e .

Dataset

LLFF Dataset

  • Please download and unzip nerf_synthetic.zip from the LLFF.

Mip-NeRF 360 Dataset

  • Please download the data from the Mip-NeRF 360 and request the authors for the treehill scenes.

Preprocessing - resizing images (Optional for MipNeRF360)

sh run_resize_mipnerf360.sh

This is to fix the issue of resolution difference when high resolution images' resolution is not 4 dividable.

  • Example: If HR resolution is 1001 x 1001, LR resolution will be 250 x 250, so the 4x upsampled images will be with resolution of 1000 x 1000.

Model download

3DSR/
  └── third_parties
           └── weights
                  └── stablesr_turbo.ckpt
                  └── vqgan_cfw_00011.ckpt

Training and Evaluation

Please modify the codes in file run_3dsr.sh for the user configuration parameters

######################################################################
# User-configurable parameters
######################################################################
dataset_name="mipnerf360" #choose from [mipnerf360, llff]
dataset_path="path/to/your/dataset"
# GPU ID
gpu=0
# HR resolution downscale factor
HR_factor=4
# Number of GS training iterations for each diffusion step
GS_iters=5000
# Pretrained LR model path
output_dir="./outputs/LR_pretrained/input_DS_$((HR_factor * 4))"
# Define 3DSR experiment directory    
exp_dir="./outputs/${dataset_name}/load_DS_$((HR_factor * 4))"

And then run:

sh run_3dsr.sh

Acknowledgements

This project is built upon MipSplatting and StableSR. Please follow the license of MipSplatting and StableSR. We thank all the authors for their great work and repos.

Citation

If you find our code or paper useful, please cite

@inproceedings{chen2025bridging,
  title={Bridging Diffusion Models and 3D Representations: A 3D Consistent Super-Resolution Framework},
  author={Chen, Yi-Ting and Liao, Ting-Hsuan and Guo, Pengsheng and Schwing, Alexander and Huang, Jia-Bin},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={13481--13490},
  year={2025}
}

About

Official codes of implementation of 3DSR (ICCV 2025)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages