Skip to content

Chen3110/AdaptiveFusion

Repository files navigation

Install

Our codebase is developed based on MeshGraphormer and MeshTransformer. Please check Install.md to install the relevant dependencies. Please also consider citing them if you use this codebase.

Download

Visit mmBody to download mmBody dataset and place it at ./datasets.

The pre-trained models can be downloaded with the following command.

sh download_models.sh

Visit the following websites to download SMPL and SMPL-X models.

  • Download basicModel_neutral_lbs_10_207_0_v1.0.0.pkl from SMPLify, and place it at ./src/modeling/data.
  • Download SMPLX_NEUTRAL.pkl from SMPL-X, and place it at ./src/modeling/data.

Experiments

Training

We use the following script to train on the mmBody dataset.

python ./run_adaptivefusion.py \
    --output_dir output/adaptivefusion \
    --dataset mmBodyDataset \
    --data_path datasets/mmBody \
    --mesh_type smplx \
    --inputs image0,image1,depth0,depth1,radar0 \
    --model AdaptiveFusion \
    --per_gpu_train_batch_size 10 \
    --train \
    --eval_test_dataset

Testing

python ./run_adaptivefusion.py \
    --output_dir output/adaptivefusion \
    --resume_checkpoint output/adaptivefusion/checkpoint \
    --dataset mmBodyDataset \
    --data_path datasets/mmBody \
    --mesh_type smplx \
    --inputs image0,image1,depth0,depth1,radar0 \
    --model AdaptiveFusion \
    --test_scene lab1

BibTeX

@article{chen2024adaptivefusion,
  title={AdaptiveFusion: Adaptive Multi-Modal Multi-View Fusion for 3D Human Body Reconstruction},
  author={Chen, Anjun and Wang, Xiangyu and Xu, Zhi and Shi, Kun and Qin, Yan and Huo, Yuchi and Chen, Jiming and Ye, Qi},
  journal={arXiv preprint arXiv:2409.04851},
  year={2024}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published