Baijiong Lin, Weisen Jiang, Yuancheng Xu, Hao Chen, and Ying-Cong Chen. PARM: Multi-Objective Test-Time Alignment via Preference-Aware Autoregressive Reward Model. In ICML, 2025.
Our code is based on TRL and PEFT for training and Model_Arithmetic for inference.
conda create -n parm python=3.10
conda activate parm
cd language-model-arithmetic/
pip install -e .
cd ../peft/
pip install -e .
conda install -c nvidia cuda-compiler
cd ..
git clone https://github.com/PKU-Alignment/safe-rlhf.git
cd safe-rlhf
pip install .
cd ..
pip install -r requirements.txt
cd code/data
python relabel.py
cd code/training
bash run.sh
cd code/evaluation
python generate_outputs.py --model_parm_both_name_or_path /path --alpha_helpfulness 0.5 --alpha_harmlessness 0.5
python compute_reward.py --path /path
This codebase is heavily based on GenARM.
If you find this work/code useful for your research, please cite the following:
@inproceedings{lin2025parm,
title={{PARM}: Multi-Objective Test-Time Alignment via Preference-Aware Autoregressive Reward Model},
author={Lin, Baijiong and Jiang, Weisen and Xu, Yuancheng and Chen, Hao and Chen, Ying-Cong},
booktitle={International Conference on Machine Learning},
year={2025}
}