This is the official PyTorch codes for the paper:
DiffRetouch: Using Diffusion to Retouch on the Shoulder of Experts
Zhengpeng Duan1,2, Jiawei Zhang2, Zheng Lin4, Xin Jin1, Xun-Dong Wang5, Dongqing Zou2,3, Chunle Guo1,6, Chongyi Li1,6,†
1 VCIP, CS, Nankai University, 2 SenseTime Research, 3 PBVR, 4 BNRist, Department of Computer Science and Technology, Tsinghua University, 5 Wuhan University of Technology, 6 NKIARI, Shenzhen Futian
†Corresponding author.
⭐ If DiffRetouch is helpful to your images or projects, please help star this repo. Thank you! 👈
- Clone repo
git clone https://github.com/adam-duan/DiffRetouch.git
cd DiffRetouch- Install packages
conda env create --file environment.yaml
conda activate diffretouchStep1: Download Checkpoints
Download the [checkpoints] and place them in the following directories: diffretouch_models/.
Step2: Prepare testing data
Download the [test_data.zip] and unzip it.
Step 3: Running testing command
bash test_adobe.sh/test_ppr.sh \
promptdir \ # Specify the expert style, e.g. '01-Experts-A' for Adobe5K and 'target_a' for PPR10K
seed \ # Set the random seed
steps \ # Set the number of diffusion steps, 20 by defaultStep 4: Check the results
The processed results will be saved in the results/ directory.
🌱 Gradio Demo
python gradio_diffretouch.py \
--ckpt_path \ # Specify the checkpoint path, e.g. 'diffretouch_models/adobe.ckpt'This project is licensed under the Pi-Lab License 1.0 - see the LICENSE file for details.
If you find our repo useful for your research, please consider citing our paper:
@inproceedings{duan2025diffretouch,
title={DiffRetouch: Using Diffusion to Retouch on the Shoulder of Experts},
author={Duan, Zheng-Peng and Zhang, Jiawei and Lin, Zheng and Jin, Xin and Wang, XunDong and Zou, Dongqing and Guo, Chun-Le and Li, Chongyi},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
year={2025}
}For technical questions, please contact adamduan0211[AT]gmail.com

