Papers by Vinoth Sittaramane
Indian journal of experimental biology, 2005
Brucella melitensis is an organism of paramount zoonotic importance. The 28 kDa outer membrane pr... more Brucella melitensis is an organism of paramount zoonotic importance. The 28 kDa outer membrane protein (OMP) is one of the immunodominant antigens of B. melitensis. The gene encoding 28 kDa OMP (omp28) has been amplified from B. melitensis Rev. 1 strain. A PCR product of 753 bp, encoding complete omp28 gene of B. melitensis, was obtained. The gene was further cloned and sequenced. The nucleotide sequence of B. melitensis Rev. 1 strain showed substitution of 2 nucleotides from that of 16M strain.

Molecular and Cellular Probes, 2010
Brucellosis is a zoonosis of both public health and economic importance in many developing countr... more Brucellosis is a zoonosis of both public health and economic importance in many developing countries including India. Early detection and segregation of the infected animals are important in order to control the disease. Serodiagnostic tests for brucellosis is mainly based on detection of antibodies developed against lipopolysaccharide (LPS) component of cell. In this study we evaluated a protein antigen, 28 kDa outer membrane protein (OMP28), of Brucella melitensis as an alternative to LPS. Recombinant OMP28 was produced in Escherichia coli system. The efficacy of purified OMP28 was studied in an indirect enzyme-linked immunosorbent assay (ELISA) for diagnosis of brucellosis in field sera collected from different regions of country. Using known negative and known positive serum samples it was found that OMP28 is immunoreactive to Brucella infected cattle, sheep, goat and dog sera. Three hundred and eighty two cattle sera were screened by OMP28 antigen-based ELISA and the results were compared to rose Bengal plate agglutination Test (RBPT). Recombinant OMP28 antigenbased ELISA has shown sensitivity of 88.7%, specificity of 93.8% and accuracy of 92.9%. It was concluded that recombinant B. melitensis OMP28 could be used as a protein antigen for diagnosis of brucellosis in domestic animals.

Nanotechnology, 2021
This is a proof-of-principle study on the combination of microwaves and multiwalled carbon nanotu... more This is a proof-of-principle study on the combination of microwaves and multiwalled carbon nanotubes to induce in vivo, localized hyperthermic ablation of cells as a potential methodology for the treatment of localized tumors. Compared to conventional methods, the proposed approach can create higher temperatures in a rapid and localized fashion, under low radiation levels, eliminating some of the unwanted side effects. Following successful ablation of cancer cells in cell culture and zebrafish tumor-xenograft models, it is hypothesized that a cancer treatment can be developed using safe microwave irradiation for selective ablation of tumor cells in vivo using carbon nanotube-Antibody (CNT-Ab) conjugates as a targeting agent. In this study, mice were used as an animal model for the optimization of the proposed microwave treatment strategy. The safe dose of CNT-Ab and microwave radiation levels for mice were determined. Further, CNT-Ab distribution and toxicology in mice were qualitat...
Biomedical Physics & Engineering Express, 2018
Sittaramane. Cellular coping mechanisms to hypoxia in the Longhorn sculpin (Myoxocephalus sculpin... more Sittaramane. Cellular coping mechanisms to hypoxia in the Longhorn sculpin (Myoxocephalus sculpin) brain. Department of Biology. Georgia Southern University. 2014. This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack N.

Frontiers in Neural Circuits
Precise positioning of neurons resulting from cell division and migration during development is c... more Precise positioning of neurons resulting from cell division and migration during development is critical for normal brain function. Disruption of neuronal migration can cause a myriad of neurological disorders. To investigate the functional consequences of defective neuronal positioning on circuit function, we studied a zebrafish frizzled3a (fzd3a) loss-of-function mutant off-limits (olt) where the facial branchiomotor (FBM) neurons fail to migrate out of their birthplace. A jaw movement assay, which measures the opening of the zebrafish jaw (gape), showed that the frequency of gape events, but not their amplitude, was decreased in olt mutants. Consistent with this, a larval feeding assay revealed decreased food intake in olt mutants, indicating that the FBM circuit in mutants generates defective functional outputs. We tested various mechanisms that could generate defective functional outputs in mutants. While fzd3a is ubiquitously expressed in neural and non-neural tissues, jaw car...
Chemical Science, 2017
Herein, we report a simple and rational approach to the design of a targeted therapy (i.e., compl... more Herein, we report a simple and rational approach to the design of a targeted therapy (i.e., complex 1) whose mechanism of action involves targeting a single cancer relevant pathway via two independent mechanisms.

Mechanisms of development, 2018
Contactin2 (Cntn2)/Transient Axonal Glycoprotein 1 (Tag1), a neural cell adhesion molecule, has e... more Contactin2 (Cntn2)/Transient Axonal Glycoprotein 1 (Tag1), a neural cell adhesion molecule, has established roles in neuronal migration and axon fasciculation in chick and mouse. In zebrafish, antisense morpholino-based studies have indicated roles for cntn2 in the migration of facial branchiomotor (FBM) neurons, the guidance of the axons of the nucleus of the medial longitudinal fascicle (nucMLF), and the outgrowth of Rohon-Beard (RB) central axons. To study functions of Cntn2 in later stages of neuronal development, we generated cntn2 mutant zebrafish using CRISPR-Cas9. Using a null mutant allele, we detected genetic interactions between cntn2 and the planar cell polarity gene vangl2, as shown previously with cntn2 morphants, demonstrating a function for cntn2 during FBM neuron migration in a sensitized background of reduced planar cell polarity signaling. In addition, maternal-zygotic (MZ) cntn2 mutant larvae exhibited aberrant touch responses and swimming, suggestive of defects ...

Comparative medicine, 2010
Polycystic kidney disease (PKD) is one of the leading causes of end-stage renal disease in humans... more Polycystic kidney disease (PKD) is one of the leading causes of end-stage renal disease in humans and is characterized by progressive cyst formation, renal enlargement, and abnormal tubular development. Currently, there is no cure for PKD. Although a number of PKD genes have been identified, their precise role in cystogenesis remains unclear. In the jcpk mouse model of PKD, mutations in the bicaudal C gene (Bicc1) are responsible for the cystic phenotype; however, the function of Bicc1 is unknown. In this study, we establish an alternative, nonmammalian zebrafish model to study the role of Bicc1 in PKD pathogenesis. Antisense morpholinos were used to evaluate loss of Bicc1 function in zebrafish. The resulting morphants were examined histologically for kidney cysts and structural abnormalities. Immunostaining and fluorescent dye injection were used to evaluate pronephric cilia and kidney morphogenesis. Knockdown of zebrafish Bicc1 expression resulted in the formation of kidney cysts;...

Neural Development, 2008
Background How axon guidance signals regulate growth cone behavior and guidance decisions in the ... more Background How axon guidance signals regulate growth cone behavior and guidance decisions in the complex in vivo environment of the central nervous system is not well understood. We have taken advantage of the unique features of the zebrafish embryo to visualize dynamic growth cone behaviors and analyze guidance mechanisms of axons emerging from a central brain nucleus in vivo. Results We investigated axons of the nucleus of the medial longitudinal fascicle (nucMLF), which are the first axons to extend in the zebrafish midbrain. Using in vivo time-lapse imaging, we show that both positive axon-axon interactions and guidance by surrounding tissue control initial nucMLF axon guidance. We further show that two guidance molecules, transient axonal glycoprotein-1 (TAG-1) and laminin-α1, are essential for the initial directional extension of nucMLF axons and their subsequent convergence into a tight fascicle. Fixed tissue analysis shows that TAG-1 knockdown causes errors in nucMLF axon pa...

Mechanisms of Development, 2014
Van gogh-like 2 (Vangl2), a core component of the Wnt/Planar Cell Polarity (PCP) signaling pathwa... more Van gogh-like 2 (Vangl2), a core component of the Wnt/Planar Cell Polarity (PCP) signaling pathway, is a four-pass transmembrane protein with N-terminal and C-terminal domains located in the cytosol, and is structurally conserved from flies to mammals. In vertebrates, Vangl2 plays an essential role in convergence and extension (CE) movements during gastrulation and in facial branchiomotor (FBM) neuron migration in the hindbrain. However, the roles of specific Vangl2 domains, of membrane association, and of specific extracellular and intracellular motifs have not been examined, especially in the context of FBM neuron migration. Through heat shock-inducible expression of various Vangl2 transgenes, we found that membrane associated functions of the Nterminal and C-terminal domains of Vangl2 are involved in regulating FBM neuron migration. Importantly, through temperature shift experiments, we found that the critical period for Vangl2 function coincides with the initial stages of FBM neuron migration out of rhombomere 4. Intriguingly, we have also uncovered a putative nuclear localization motif in the C-terminal domain that may play a role in regulating CE movements.

Developmental Dynamics, 2011
The amino acid sequence across the DNA-binding homeodomain of Gbx2 is highly conserved across mul... more The amino acid sequence across the DNA-binding homeodomain of Gbx2 is highly conserved across multiple species. In mice, Gbx2 is essential for establishment of the midbrain-hindbrain boundary (MHB), and in development of anterior hindbrain structures, rhombomeres (r) 1-r3, and the r2/r3-derived cranial nerve V. In contrast, studies in zebrafish have implicated gbx1 in establishment of the MHB. Therefore, we tested potential roles for gbx2 in anterior hindbrain development in zebrafish. gbx2 knockdown with antisense morpholino results in increased cell death in r2, r3, and r5 and a truncation of the anterior hindbrain, similar to the defect in Gbx2(-/-) mice. Moreover, there is abnormal clustering of cranial nerve V cell bodies in r2 and r3 indicative of defects in aspects of anterior hindbrain patterning. These phenotypes can be rescued by expression of the mouse GBX2 protein. These results suggest that gbx2/Gbx2 has an evolutionarily conserved role in anterior hindbrain development.

Developmental Biology, 2013
Vangl2, a core component of the Planar Cell Polarity pathway, is necessary for the caudal migrati... more Vangl2, a core component of the Planar Cell Polarity pathway, is necessary for the caudal migration of Facial Branchiomotor (FBM) neurons in the vertebrate hindbrain. Studies in zebrafish suggest that vangl2 functions largely non-cell autonomously to regulate FBM neuron migration out of rhombomere 4 (r4), but the cell-type within which it acts is not known. Here, we demonstrate that vangl2 functions largely in floor plate cells to regulate caudal neuronal migration. Furthermore, FBM neurons fail to migrate caudally in the mouse Gli2 mutant that lacks the floor plate, suggesting an evolutionarily conserved role for this cell type in neuronal migration. Although hindbrain floor plate cilia are disorganized in vangl2 mutant embryos, cilia appear to be dispensable for neuronal migration. Notably, Vangl2 is enriched in the basolateral, but not apical, membranes of floor plate cells. Taken together, our data suggest strongly that Vangl2 regulates FBM neuron migration by acting in floor plate cells, independently of cilia function.

Developmental Biology, 2012
During development, facial branchiomotor (FBM) neurons, which innervate muscles in the vertebrate... more During development, facial branchiomotor (FBM) neurons, which innervate muscles in the vertebrate head, migrate caudally and radially within the brainstem to form a motor nucleus at the pial surface. Several components of the Wnt/planar cell polarity (PCP) pathway, including the transmembrane protein Vangl2, regulate caudal migration of FBM neurons in zebrafish, but their roles in neuronal migration in mouse have not been investigated in detail. Therefore, we analyzed FBM neuron migration in mouse looptail (Lp) mutants, in which Vangl2 is inactivated. In Vangl2 Lp/ þ and Vangl2 Lp/Lp embryos, FBM neurons failed to migrate caudally from rhombomere (r) 4 into r6. Although caudal migration was largely blocked, many FBM neurons underwent normal radial migration to the pial surface of the neural tube. In addition, hindbrain patterning and FBM progenitor specification were intact, and FBM neurons did not transfate into other non-migratory neuron types, indicating a specific effect on caudal migration. Since loss-of-function in some zebrafish Wnt/PCP genes does not affect caudal migration of FBM neurons, we tested whether this was also the case in mouse. Embryos null for Ptk7, a regulator of PCP signaling, had severe defects in caudal migration of FBM neurons. However, FBM neurons migrated normally in Dishevelled (Dvl) 1/2 double mutants, and in zebrafish embryos with disrupted Dvl signaling, suggesting that Dvl function is essentially dispensable for FBM neuron caudal migration. Consistent with this, loss of Dvl2 function in Vangl2 Lp/ þ embryos did not exacerbate the Vangl2 Lp/ þ neuronal migration phenotype. These data indicate that caudal migration of FBM neurons is regulated by multiple components of the Wnt/PCP pathway, but, importantly, may not require Dishevelled function. Interestingly, genetic-interaction experiments suggest that rostral FBM neuron migration, which is normally suppressed, depends upon Dvl function.
Veterinary research …, 2010
Brucella abortus, a gram negative, facultative intracellular pathogen causes brucellosis in many ... more Brucella abortus, a gram negative, facultative intracellular pathogen causes brucellosis in many animal species and humans. Although live, attenuated vaccines are available against this infection, they suffer from certain limitations. Therefore, the ...

Gene Expression Patterns, 2008
Neuronal migration and growth cone motility are essential aspects of the development and maturati... more Neuronal migration and growth cone motility are essential aspects of the development and maturation of the nervous system. These cellular events result from dynamic changes in the organization and function of the cytoskeleton, in part due to the activity of cytoskeletal motor proteins such as myosins. Although specific myosins such as Myo2 (conventional or muscle myosin), Myo1, and Myo5 have been well characterized for roles in cell motility, the roles of the majority of unconventional (other than Myo2) myosins in cell motility events have not been investigated. To address this issue, we have undertaken an analysis of unconventional myosins in zebrafish, a premier model for studying cellular and growth cone motility in the vertebrate nervous system. We describe the characterization and expression patterns of several members of the unconventional myosin gene family. Based on available genomic sequence data, we identified 18 unconventional myosin-and 4 Myo2-related genes in the zebrafish genome in addition to previously characterized myosin (1, 2, 3, 5, 6, 7) genes. Phylogenetic analyses indicate that these genes can be grouped into existing classifications for unconventional myosins from mouse and man. In situ hybridization analyses using EST probes for 18 of the 22 identified genes indicate that 11/18 genes are expressed in a restricted fashion in the zebrafish embryo. Specific myosins are expressed in particular neuronal or neuroepithelial cell types in the developing zebrafish nervous system, spanning the periods of neuronal differentiation and migration, and of growth cone guidance and motility.

Developmental Neurobiology, 2009
The transmembrane protein Van gogh-like 2 (Vangl2) is a component of the noncanonical Wnt/Planar ... more The transmembrane protein Van gogh-like 2 (Vangl2) is a component of the noncanonical Wnt/Planar Cell Polarity (PCP) signaling pathway, and is required for tangential migration of facial branchiomotor neurons (FBMNs) from rhombomere 4 (r4) to r5-r7 in the vertebrate hindbrain. Since vangl2 is expressed throughout the zebrafish hindbrain, it might also regulate motor neuron migration in other rhombomeres. We tested this hypothesis by examining whether migration of motor neurons out of r2 following ectopic hoxb1b expression was affected in vangl2− (trilobite) mutants. Hoxb1b specifies r4 identity, and when ectopically expressed transforms r2 to an “r4-like” compartment. Using time-lapse imaging, we show that GFP-expressing motor neurons in the r2/r3 region of a hoxb1b-overexpressing wild-type embryo migrate along the anterior-posterior (AP) axis. Furthermore, these cells express prickle1b (pk1b), a Wnt/PCP gene that is specifically expressed in FBMNs and is essential for their migration. Importantly, GFP-expressing motor neurons in the r2/r3 region of hoxb1b-overexpressing trilobite mutants and pk1b morphants often migrate, even though FBMNs in r4 of the same embryos fail to migrate longitudinally (tangentially) into r6 and r7. These observations suggest that tangentially migrating motor neurons in the anterior hindbrain (r1-r3) can use mechanisms that are independent of vangl2 and pk1b functions. Interestingly, analysis of tri; val double mutants also suggests a role for vangl2-independent factors in neuronal migration, since the valentino mutation partially suppresses the trilobite mutant migration defect. Together, the hoxb1b and val experiments suggest that multiple mechanisms regulate motor neuron migration along the AP axis of the zebrafish hindbrain. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2010
Developmental Biology, 2009
Uploads
Papers by Vinoth Sittaramane