| 意味 |
Frobenius endomorphismとは 意味・読み方・使い方
追加できません
(登録数上限)
意味・対訳 可換環論や体論では、フロベニウス自己準同型 (フロベニウス写像、英: Frobenius endomorphism、Frobenius map) (フェルディナント・ゲオルク・フロベニウスの名前にちなむ)は、有限体を含む重要なクラスである素数の標数 p をもつ可換環の特別な自己準同型のことを言う。
Wiktionary英語版での「Frobenius endomorphism」の意味 |
Frobenius endomorphism
出典:『Wiktionary』 (2025/10/26 15:29 UTC 版)
語源
Named after German mathematician Ferdinand Georg Frobenius.
名詞
Frobenius endomorphism (plural Frobenius endomorphisms)
- (algebra, commutative algebra, field theory) Given a commutative ring R with prime characteristic p, the endomorphism that maps x → x for all x ∈ R.
-
2003, Claudia Miller, “The Frobenius endomorphism and homological dimensions”, in Luchezar L. Avramov, Marc Chardin, Marcel Morales, Claudia Polini, editors, Commutative Algebra: Interactions with Algebraic Geometry: International Conference, American Mathematical Society, page 208:
-
Section 3 concerns what properties of the ring other than regularity are reflected by the homological properties of the Frobenius endomorphism.
-
- 2005, Emmanuel Letellier, Fourier Transforms of Invariant Functions on Finite Reductive Lie Algebras, Springer, Lecture Notes in Mathematics 1859, page 11,
- Let , and let be a power of such that the group is defined over . We then denote by the corresponding Frobenius endomorphism. The Lie algebra and the adjoint action of on are also defined over and we still denote by the Frobenius endomorphism on .
- […] Assume that and the action of over are all defined over . Let and be the corresponding Frobenius endomorphisms.
- 2006, Christophe Doche, Tanja Lange, Chapter 15: Arithmetic of Special Curves, Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja Lange, Kim Nguyen, Frederik Vercauteren (editors), Handbook of Elliptic and Hyperelliptic Curve Cryptography, Taylor & Francis (Chapman & Hall / CRC Press), page 356,
-
The first attempt to use the Frobenius endomorphism to compute scalar multiples was made by Menezes and Vanstone (MEVA 1900) using the curve
- .
-
In this case, the characteristic polynomial of the Frobenius endomorphism denoted by (cf. Example 4.87 and Section 13.1.8), which sends to itself and to , is
- .
- Thus doubling is replaced by a twofold application of the Frobenius endomorphism and taking the negative as for all points , we have .
-
The first attempt to use the Frobenius endomorphism to compute scalar multiples was made by Menezes and Vanstone (MEVA 1900) using the curve
-
同意語
- (particular endomorphism on a commutative ring with prime characteristic): Frobenius homomorphism
関連する語
- Frobenius automorphism
- Frobenius closure
- Frobenius element
- Frobenius morphism
Further reading
Characteristic (algebra) on Wikipedia.Wikipedia
Frobenioid on Wikipedia.Wikipedia
Perfect field on Wikipedia.Wikipedia - Frobenius endomorphism on Encyclopedia of Mathematics
- Frobenius morphism on nLab
|
| 意味 |
|
|
Frobenius endomorphismのページの著作権
英和・和英辞典
情報提供元は
参加元一覧
にて確認できます。
|
Text is available under Creative Commons Attribution-ShareAlike (CC-BY-SA) and/or GNU Free Documentation License (GFDL). Weblio英和・和英辞典に掲載されている「Wiktionary英語版」の記事は、WiktionaryのFrobenius endomorphism (改訂履歴)の記事を複製、再配布したものにあたり、Creative Commons Attribution-ShareAlike (CC-BY-SA)もしくはGNU Free Documentation Licenseというライセンスの下で提供されています。 |
ピン留めアイコンをクリックすると単語とその意味を画面の右側に残しておくことができます。 |
|
ログイン |
Weblio会員(無料)になると
|
「Frobenius endomorphism」のお隣キーワード |
weblioのその他のサービス
|
ログイン |
Weblio会員(無料)になると
|