Papers by Sergey Sinebryukhov

Materials, Jun 17, 2020
Wrought Al-Cu-Mg aluminum alloy (D16) was treated by bipolar plasma electrolytic oxidation to cre... more Wrought Al-Cu-Mg aluminum alloy (D16) was treated by bipolar plasma electrolytic oxidation to create a base plasma electrolytic oxidation (PEO)-coating with corrosion protection and mechanical properties superior to bare alloy's natural oxide layer. Additional protection was provided by the application of polymer, thus creating a composite coating. Electrochemical and scratch tests, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction studies were performed. Degradation of coatings in the marine atmosphere and seawater was evaluated. The composite polymer-containing coating provided better corrosion protection of aluminum alloy compared to the PEO-coating, although seawater affected both. During the atmospheric exposure, the PEO-coating provided reasonably good protection, and the composite coating showed excellent performance.

Materials, Aug 16, 2019
The paper studies microstructure, chemical composition and corrosion activity of the tungsten ine... more The paper studies microstructure, chemical composition and corrosion activity of the tungsten inert gas welded joint of the Al-Mg-Sc alloy. An intensive corrosion attack of the heat affected zone (HAZ) was found due to precipitation of secondary phases at recrystallized grain boundaries. The ccorrosion process initiated along the boundary of α-Al grains, where a high concentration of anodic (Mg 2 Si and Mg 2 Al 3) and cathodic phases ((MnFe)Al 6) was observed. Increased temperatures during welding led to coalescence of the anodic phases in HAZ. Additionally, HAZ was found to be enriched with hard intermetallic compounds (Mg 2 Si and (MnFe)Al 6). This area had a higher microhardness (930 MPa) compared to base metal (BM, 895 MPa) and fusion zone (FZ, 810 MPa). The volume fraction of secondary phases was 26% in BM, 28% in FZ and 38% in HAZ. The average grain size increased in the following order: (9 ± 3) µm (BM) < (16 ± 3) µm (HAZ) < (21 ± 5) µm (FZ). A plasma electrolytic oxidation (PEO) coating of aluminum-based material was applied to protect the weld from oxidation. The PEO-coating provided a high corrosion protection in the aggressive Cl −-containing environment.
Цветные металлы, Aug 28, 2015
Цветные металлы, Jan 31, 2017
Journal of Molecular Liquids, Mar 1, 2022

Journal of Functional Biomaterials
In this work, the micro-arc oxidation method is used to fabricate surface-modified complex-struct... more In this work, the micro-arc oxidation method is used to fabricate surface-modified complex-structured titanium implant coatings to improve biocompatibility. Depending on the utilized electrolyte solution and micro-arc oxidation process parameters, three different types of coatings (one of them—oxide, another two—calcium phosphates) were obtained, differing in their coating thickness, crystallite phase composition and, thus, with a significantly different biocompatibility. An analytical approach based on X-ray computed tomography utilizing software-aided coating recognition is employed in this work to reveal their structural uniformity. Electrochemical studies prove that the coatings exhibit varying levels of corrosion protection. In vitro and in vivo experiments of the three different micro-arc oxidation coatings prove high biocompatibility towards adult stem cells (investigation of cell adhesion, proliferation and osteogenic differentiation), as well as in vivo biocompatibility (in...
The 29th International Ocean and Polar Engineering Conference, Jun 16, 2019

Electrochemical Energetics, 2014
TiO2–TiOF2 composite has been synthesized in plasma by the unique method of pulsed high-voltage d... more TiO2–TiOF2 composite has been synthesized in plasma by the unique method of pulsed high-voltage discharge due to the destruction of Ti electrodes and polytetrafluoroethylene wire. TiO2–TiOF2 features have been investigated by scanning electron microscopy, X-ray diffraction, infrared spectroscopy, energy-dispersive X-ray analysis, Raman spectroscopy, and X-ray photoelectron spectroscopy. It has been shown that composite with a porous surface morphology includes the nanocrystallites of sizes ranging from 40 to 200 nm. The average diameter of the pore is 3–5 nm. Electrochemical characterization of the nanostructured porous TiO2–TiOF2 composite was carried out in view of its application as an anode-active material for Li-ion battery. The initial high specific capacity of the composite is equal up to 1370 mAh g−1 at a rate of 20 mA g−1. It is higher (due to the TiO2 presence) in comparison with up-to-date TiOF2 anode materials. Galvanostatic charge–discharge cycling of the Li/TiO2–TiOF2 ...
Electrochemical Energetics, 2013
In this paper the possibility of applying of hydrolysis lignin as the lithium battery cathode mat... more In this paper the possibility of applying of hydrolysis lignin as the lithium battery cathode material was demonstrated for the first time. Hydrolysis lignin features have been investigated by impedance spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Electrochemical characterization was carried out at room temperature using 1M LiBF4 in γ-butyrolacton electrolyte system. The chemical composition of cathode materials upon battery discharge down to 0.9 V was studied by the X-ray photoelectron spectroscopy and Infrared spectroscopy. The suggestions on possible electrochemical reactions occurring in the lithium/hydrolysis lignin system were made on the basis of the products composition analysis.
Key Engineering Materials, 2021
The paper presents results of the composite polymer-containing layers formation by plasma electro... more The paper presents results of the composite polymer-containing layers formation by plasma electrolytic oxidation (PEO) with subsequent application of the superdispersed polytetrafluoroethylene (SPTFE) aqueous suspension. The corrosion properties and adhesion of coatings have been investigated using potentiodynamic polarization and scratch tests. Incorporation of SPTFE decreased the corrosion current density for composite layers by more than 3 orders of magnitude in comparison with the base PEO-coating and increased the coatings adhesion by 30 %.
Solid State Phenomena, 2020
In this research the results of the formation of composite materials based on magnesium for the n... more In this research the results of the formation of composite materials based on magnesium for the needs of implant surgery are discussed. The synthesis of porous magnesium with the inclusion of hydroxyapatite particles was preformed by means of a powder metallurgical mechanochemical process. The resulting samples were impregnated with bioactive additives such as shilajit. To protect against premature corrosion, the samples were coated with plasma electrolytic oxidation (PEO).

Corrosion science and technology, 2018
Development of biodegradable implants for treatment of complex bone fractures has recently become... more Development of biodegradable implants for treatment of complex bone fractures has recently become one of the priority areas in biomedical materials research. Multifunctional corrosion resistant and bioactive coatings containing hydroxyapatite Ca 10 (PO 4) 6 (OH) 2 and magnesium oxide MgO were obtained on Mg-Mn-Ce magnesium alloy by plasma electrolytic oxidation. The phase and elemental composition, morphology, and anticorrosion properties of the coatings were investigated by scanning electron microscopy, energy dispersive spectroscopy, potentiodynamic polarization, and electrochemical impedance spectroscopy. The PEO-layers were post-treated using superdispersed polytetrafluoroethylene powder. The duplex treatment considerably reduced the corrosion rate (>4 orders of magnitude) of the magnesium alloy. The use of composite coatings in inducing bioactivity and controlling the corrosion degradation of resorbable Mg implants are considered promising. We also applied the plasma electrolytic oxidation method for the formation of the composite bioinert coatings on the titanium nickelide surface in order to improve its electrochemical properties and to change the morphological structure. It was shown that formed coatings significantly reduced the quantity of nickel ions released into the organism.
Solid State Phenomena, 2020
The paper presents the results of a study of the protective properties of composite coatings obta... more The paper presents the results of a study of the protective properties of composite coatings obtained on AMg3 aluminum alloy by plasma electrolytic oxidation (PEO) and subsequent modification of formed oxide layer with superdispersed polytetrafluoroethylene (SPTFE) from a suspension based on isopropyl alcohol. The incorporation of fluoropolymer decreased the porosity of base PEO-coating more than one order of magnitude. Formed composite layers increased wearproof of the samples by more than two orders of magnitude in comparison with PEO-coating. Additionally, polymer-containing coatings has higher adhesion compared to substrate. Formed composite layers possess superhydrophobic properties: contact angle attains 155°.
Corrosion Science, 2020
This is a PDF file of an article that has undergone enhancements after acceptance, such as the ad... more This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Uploads
Papers by Sergey Sinebryukhov