Papers by Narasimhan Rajaram

We demonstrate an optical strategy using intravital microscopy of dorsal skin flap window chamber... more We demonstrate an optical strategy using intravital microscopy of dorsal skin flap window chamber models to image glucose uptake and vascular oxygenation in vivo. Glucose uptake was imaged using a fluorescent glucose analog, 2-[N-(7nitrobenz-2-oxa-1,3-diaxol-4-yl)amino]-2-deoxyglucose (2-NBDG). SO 2 was imaged using the differential absorption properties of oxygenated [HbO 2 ] and deoxygenated hemoglobin [dHb]. This study was carried out on two sibling murine mammary adenocarcinoma lines, 4T1 and 4T07. 2-NBDG uptake in the 4T1 tumors was lowest when rates of delivery and clearance were lowest, indicating perfusion-limited uptake in poorly oxygenated tumor regions. For increasing rates of delivery that were still lower than the glucose consumption rate (as measured in vitro), both 2-NBDG uptake and the clearance rate from the tumor increased. When the rate of delivery of 2-NBDG exceeded the glucose consumption rate, 2-NBDG uptake decreased with any further increase in rate of delivery, but the clearance rate continued to increase. This inflection point was not observed in the 4T07 tumors due to an absence of low delivery rates close to the glucose consumption rate. In the 4T07 tumors, 2-NBDG uptake increased with increasing rates of delivery at low rates of clearance. Our results demonstrate that 2-NBDG uptake in tumors is influenced by the rates of delivery and clearance of the tracer. The rates of delivery and clearance are, in turn, dependent on vascular oxygenation of the tumors. Knowledge of the kinetics of tracer uptake as well as vascular oxygenation is essential to make an informed assessment of glucose demand of a tumor.

Radiotherapy and Oncology
BACKGROUND AND PURPOSE: Although radiation induced reoxygenation has been thought to increase rad... more BACKGROUND AND PURPOSE: Although radiation induced reoxygenation has been thought to increase radiosensitivity, we have shown that its associated oxidative stress can have radioprotective effects, including stabilization of the transcription factor hypoxia inducible factor 1 (HIF-1). HIF-1 is known to regulate many of the glycolytic enzymes, thereby promoting aerobic glycolysis, which is known to promote treatment resistance. Thus, we hypothesized that reoxygenation after radiation would increase glycolysis. We previously showed that blockade of oxidative stress using a superoxide dismutase (SOD) mimic during reoxygenation can downregulate HIF-1 activity. Here we tested whether concurrent use of this drug with radiotherapy would reduce the switch to a glycolytic phenotype.MATERIALS AND METHODS: 40 mice with skin fold window chambers implanted with 4T1 mammary carcinomas were randomized into (1) no treatment, (2) radiation alone, (3) SOD mimic alone, and (4) SOD mimic with concurrent radiation. All mice were imaged on the ninth day following tumor implantation (30 h following radiation treatment) following injection of a fluorescent glucose analog, 2-[N-(7-nitrobenz-2-oxa-1,3-diaxol-4-yl)amino]-2-deoxyglucose (2-NBDG). Hemoglobin saturation was measured by using hyperspectral imaging to quantify oxygenation state.RESULTS: Mice treated with radiation showed significantly higher 2-NBDG fluorescence compared to controls (p=0.007). Hemoglobin saturation analysis demonstrated reoxygenation following radiation, coinciding with the observed increase in glycolysis. The concurrent use of the SOD mimic with radiation demonstrated a significant reduction in 2-NBDG fluorescence compared to effects seen after radiation alone, while having no effect on reoxygenation.CONCLUSIONS: Radiation induces an increase in tumor glucose demand approximately 30 h following therapy during reoxygenation. The use of an SOD mimic can prevent the increase in aerobic glycolysis when used concurrently with radiation, without preventing reoxygenation.Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

Chemistry and Biology
Inhibitors of heat-shock protein 90 (Hsp90) have demonstrated an unusual selectivity for tumor ce... more Inhibitors of heat-shock protein 90 (Hsp90) have demonstrated an unusual selectivity for tumor cells despite its ubiquitous expression. This phenomenon has remained unexplained, but could be influenced by ectopically expressed Hsp90 in tumors. In this work, we synthesized Hsp90 inhibitors that can carry optical or radioiodinated probes via a polyethyleneglycol tether. We show that these tethered inhibitors selectively recognize cells expressing ectopic Hsp90 and become internalized. The internalization process is blocked by Hsp90 antibodies, suggesting that active cycling of the protein occurs at the plasma membrane. In mice, we observed exquisite accumulation of the fluor-tethered versions within breast tumors at very sensitive levels. Cell-based assays with the radiolabeled version showed picomolar detection in cells that express ectopic Hsp90. Our findings show that fluor-tethered or radiolabeled inhibitors that target ectopic Hsp90 can be used to detect breast cancer malignancies through noninvasive imaging. Copyright © 2013 Elsevier Ltd. All rights reserved.
Abstract. An inverse Monte Carlo based model has been developed to extract intrinsic fluorescence... more Abstract. An inverse Monte Carlo based model has been developed to extract intrinsic fluorescence from turbid media. The goal of this work was to experimentally validate the model to extract intrinsic fluorescence of three biologically meaningful fluorophores related to metabolism from turbid media containing absorbers and scatterers.
Abstract Diffuse reflectance spectroscopy (DRS) has been extensively applied for the characteriza... more Abstract Diffuse reflectance spectroscopy (DRS) has been extensively applied for the characterization of biological tissue, especially for dysplasia and cancer detection, by determination of the tissue optical properties. A major challenge in performing routine clinical diagnosis lies in the extraction of the relevant parameters, especially at high absorption levels typically observed in cancerous tissue.
Light scattering in the normally white sclera prevents diagnostic imaging or delivery of a focuse... more Light scattering in the normally white sclera prevents diagnostic imaging or delivery of a focused laser beam to a target in the underlying choroid layer. In this study, we examine optical clearing of the sclera and changes in blood flow resulting from the application of glycerol to the sclera of rabbits. Recovery dynamics are monitored after the application of saline. The speed of clearing for injection delivery is compared to the direct application of glycerol through an incision in the conjunctiva.
Abstract. Diffuse optical spectroscopy (DOS) provides a powerful tool for fast and noninvasive di... more Abstract. Diffuse optical spectroscopy (DOS) provides a powerful tool for fast and noninvasive disease diagnosis. The ability to leverage DOS to accurately quantify tissue optical parameters hinges on the model used to estimate light-tissue interaction. We describe the accuracy of a lookup table (LUT)-based inverse model for measuring optical properties under different conditions relevant to biological tissue.
Optical reflectance probes are often used as tools to obtain optical spectra from superficial tis... more Optical reflectance probes are often used as tools to obtain optical spectra from superficial tissues and subsequently determine optical and physiological properties associated with early stage cancer. These probes, when placed directly on the tissue, are known to cause significant pressure-dependent changes in local optical properties.
Diffuse reflectance and fluorescence spectroscopy are popular research techniques for noninvasive... more Diffuse reflectance and fluorescence spectroscopy are popular research techniques for noninvasive disease diagnostics. Most systems include an optical fiber probe that transmits and collects optical spectra in contact with the suspected lesion. The purpose of this study is to investigate probe pressure effects on human skin spectroscopic measurements.
Biomedical …, Jan 1, 2010
Diffuse reflectance spectroscopy (DRS) uses the steady-state diffuse reflectance measured from th... more Diffuse reflectance spectroscopy (DRS) uses the steady-state diffuse reflectance measured from the tissue surface to determine absorption and scattering properties of sampled tissue. Many inverse models used to determine absorber properties have assumed a homogeneous distribution of blood. However, blood in tissue is confined to blood vessels that occupy a small fraction of the overall volume. This simplified assumption can lead to large errors when measuring optical properties. The objective of this study was to examine the effect of confining absorbers to small volumes, such as the microvasculature, on in vivo DRS.
We report a probe-based portable and clinically compatible instrument for the spectral diagnosis ... more We report a probe-based portable and clinically compatible instrument for the spectral diagnosis of melanoma and non-melanoma skin cancers. The instrument combines two modalities – diffuse reflectance and intrinsic fluorescence spectroscopy – to provide complementary information regarding tissue morphology, function and biochemical composition. The instrument provides good signal-to-noise for the collected reflectance and laser-induced fluorescence spectra. Validation experiments on tissue phantoms over a physiologically relevant range of albedos (0.35 - 0.99) demonstrate an accuracy of close to 10% in determining scattering, absorption and fluorescence characteristics. We also demonstrate the ability of our instrument to collect in vivo diffuse reflectance and fluorescence measurements from clinically normal skin, dysplastic nevus and malignant non-melanoma skin cancer.
We present a lookup table (LUT)–based inverse model for determining the optical properties of tur... more We present a lookup table (LUT)–based inverse model for determining the optical properties of turbid media from steady-state diffuse reflectance spectra that is valid for fiber-based probe geometries with close source-detector separations and tissue with low albedo. The lookup table is based solely on experimental measurements of calibration standards. We used tissue-simulating phantoms to validate the accuracy of the LUT inverse model. Our results show excellent agreement between the expected and extracted values of the optical parameters. In addition, the LUT represents a significant improvement in accuracy at short source-detector separations (300 μm) and low albedo (~0.35). We also present in vivo data from clinically normal and malignant non-melanoma skin cancers fit to the LUT-based model.
IEEE Journal of …, Jan 1, 2007
Conference Proceedings by Narasimhan Rajaram
spie.org
ABSTRACT Diffuse optical spectroscopy (DOS) and laser-induced fluorescence (LIF) techniques have ... more ABSTRACT Diffuse optical spectroscopy (DOS) and laser-induced fluorescence (LIF) techniques have widely been used as noninvasive tools for early cancer detection in several organs including the cervix, oral cavity and gastrointestinal tract. Using a combined DOS/LIF approach, one can simultaneously measure the morphology and biochemical composition of tissue and use these features to diagnose malignancy. We report both the optical properties and native fluorophore characteristics of non-melanoma skin cancer in the UV- ...
This paper deals with the optical properties of human tissues that are measured using laser refle... more This paper deals with the optical properties of human tissues that are measured using laser reflectometry method. The result is compared with the phantom and simulation values to get accurate result. The surface Backscattering was determined by laser reflectometry. The tissue equivalent phantom would be prepared with the help of white paraffin wax mixed with various colour pigments in multiple proportions. A familiar Monte Carlo Simulation is used for the analysis of the optical properties of the tissue.
Diffuse optical spectroscopy (DOS) and laser-induced fluorescence (LIF) techniques have widely be... more Diffuse optical spectroscopy (DOS) and laser-induced fluorescence (LIF) techniques have widely been used as noninvasive tools for early cancer detection in several organs including the cervix, oral cavity and gastrointestinal tract. Using a combined DOS/LIF approach, one can simultaneously measure the morphology and biochemical composition of tissue and use these features to diagnose malignancy.
Uploads
Papers by Narasimhan Rajaram
Conference Proceedings by Narasimhan Rajaram