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Bayes Classifier
Generative Approach to Classification Problems

Setting:

q X is a multiset of feature vectors.

q C is a set of classes.

q D = {(x1, c1), . . . , (xn, cn)} ⊆ X × C is a multiset of examples.

Learning task:

q Fit D using joint probabilities p() between features and classes.
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Bayes Classifier
Bayes Theorem

Theorem 12 (Bayes [1701-1761])

Let (Ω,P(Ω), P ) be a probability space, and let A1, . . . , Ak be mutually exclusive
events with Ω = A1 ∪ . . . ∪ Ak, P (Ai) > 0, i = 1, . . . , k. Then for an event B ∈ P(Ω)

with P (B) > 0 holds:

P (Ai | B) =
P (Ai) · P (B | Ai)
k∑
i=1

P (Ai) · P (B | Ai)

P (Ai) is called prior probability of Ai.

P (Ai | B) is called posterior probability of Ai.
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Bayes Classifier
Bayes Theorem (continued)

Proof (Bayes Theorem)

From the
::::::::::::::::
conditional

::::::::::::::::::::
probabilities for P (B | Ai) and P (Ai | B) follows:

P (Ai | B) =
P (B ∩ Ai)

P (B)
=

P (Ai) · P (B | Ai)

P (B)
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Bayes Classifier
Bayes Theorem (continued)

Proof (Bayes Theorem)

From the
::::::::::::::::
conditional

::::::::::::::::::::
probabilities for P (B | Ai) and P (Ai | B) follows:

P (Ai | B) =
P (B ∩ Ai)

P (B)
=

P (Ai) · P (B | Ai)

P (B)

Applying the theorem of
:::::::
total

:::::::::::::::::
probability to P (B),

P (B) =

k∑
i=1

P (Ai) · P (B | Ai),

will yield the claim.
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Bayes Classifier
Example: Reasoning About a Disease [Kirchgessner 2009]

1. A1 : HIV_pos P (A1) = 0.001 (prior knowledge about population)

⇒ A2 : HIV_neg P (A2) = P (A1) = 1− P (A1) = 0.999

B : test_pos ⇒ P (B) =
∑2

i=1 P (Ai) · P (B | Ai) = 0.031
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Bayes Classifier
Example: Reasoning About a Disease [Kirchgessner 2009]

1. A1 : HIV_pos P (A1) = 0.001 (prior knowledge about population)

⇒ A2 : HIV_neg P (A2) = P (A1) = 1− P (A1) = 0.999

B : test_pos ⇒ P (B) =
∑2

i=1 P (Ai) · P (B | Ai) = 0.031
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Bayes Classifier
Example: Reasoning About a Disease [Kirchgessner 2009]

1. A1 : HIV_pos P (A1) = 0.001 (prior knowledge about population)

⇒ A2 : HIV_neg P (A2) = P (A1) = 1− P (A1) = 0.999

B : test_pos ⇒ P (B) =
∑2

i=1 P (Ai) · P (B | Ai) = 0.031

2. B | A1 : test_pos | HIV_pos P (B | A1) = 0.98 (result from clinical trials)

3. B | A2 : test_pos | HIV_neg P (B | A2) = 0.03 (result from clinical trials)
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Bayes Classifier
Example: Reasoning About a Disease [Kirchgessner 2009]

1. A1 : HIV_pos P (A1) = 0.001 (prior knowledge about population)

⇒ A2 : HIV_neg P (A2) = P (A1) = 1− P (A1) = 0.999

B : test_pos ⇒ P (B) =
∑2

i=1 P (Ai) · P (B | Ai) = 0.031

2. B | A1 : test_pos | HIV_pos P (B | A1) = 0.98 (result from clinical trials)

3. B | A2 : test_pos | HIV_neg P (B | A2) = 0.03 (result from clinical trials)
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Bayes Classifier
Example: Reasoning About a Disease [Kirchgessner 2009]

1. A1 : HIV_pos P (A1) = 0.001 (prior knowledge about population)

⇒ A2 : HIV_neg P (A2) = P (A1) = 1− P (A1) = 0.999

B : test_pos ⇒ P (B) =
∑2

i=1 P (Ai) · P (B | Ai) = 0.031

2. B | A1 : test_pos | HIV_pos P (B | A1) = 0.98 (result from clinical trials)

3. B | A2 : test_pos | HIV_neg P (B | A2) = 0.03 (result from clinical trials)
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Bayes Classifier
Example: Reasoning About a Disease [Kirchgessner 2009]

1. A1 : HIV_pos P (A1) = 0.001 (prior knowledge about population)

⇒ A2 : HIV_neg P (A2) = P (A1) = 1− P (A1) = 0.999

B : test_pos ⇒ P (B) =
∑2

i=1 P (Ai) · P (B | Ai) = 0.031

2. B | A1 : test_pos | HIV_pos P (B | A1) = 0.98 (result from clinical trials)

3. B | A2 : test_pos | HIV_neg P (B | A2) = 0.03 (result from clinical trials)

Simple Bayes rule [
:::::::::::
subjectivist] :

P (HIV_pos | test_pos) = P (A1 | B) =
P (A1) · P (B | A1)

P (B)
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Bayes Classifier
Example: Reasoning About a Disease [Kirchgessner 2009]

1. A1 : HIV_pos P (A1) = 0.001 (prior knowledge about population)

⇒ A2 : HIV_neg P (A2) = P (A1) = 1− P (A1) = 0.999

B : test_pos ⇒ P (B) =
∑2

i=1 P (Ai) · P (B | Ai) = 0.031

2. B | A1 : test_pos | HIV_pos P (B | A1) = 0.98 (result from clinical trials)

3. B | A2 : test_pos | HIV_neg P (B | A2) = 0.03 (result from clinical trials)

Simple Bayes rule [
:::::::::::
subjectivist] :

P (HIV_pos | test_pos) = P (A1 | B) =
P (A1) · P (B | A1)

P (B)
=

0.001 · 0.98

0.031
= 0.032 = 3.2%

ML:VII-74 Bayesian Learning © STEIN 2026

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-probability-basics.pdf#subjectivism-bayesian-probability


Bayes Classifier
Example: Reasoning About a Disease [Kirchgessner 2009]

1. A1 : HIV_pos P (A1) = 0.001 (prior knowledge about population)

⇒ A2 : HIV_neg P (A2) = P (A1) = 1− P (A1) = 0.999

B : test_pos ⇒ P (B) =
∑2

i=1 P (Ai) · P (B | Ai) = 0.031

2. B | A1 : test_pos | HIV_pos P (B | A1) = 0.98 (result from clinical trials)

3. B | A2 : test_pos | HIV_neg P (B | A2) = 0.03 (result from clinical trials)

Simple Bayes rule [
:::::::::::
subjectivist] :

P (HIV_pos | test_pos) = P (A1 | B) =
P (A1) · P (B | A1)

P (B)
=

0.001 · 0.98

0.031
= 0.032 = 3.2%

Sample size Disease statistics  (prior knowledge) Diagnosis  (= hypothesis selection)

100 000

100 (HIV_pos)

99 900 (HIV_neg)

98 (test_pos)

2 (test_neg)

2 997 (test_pos)

96 903 (test_neg)
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Remarks (prior probability model) :

q In the example it is presumed that

– the set of diagnoses is complete; i.e., there is no possible third diagnosis A3, and

– that A1 and A2 are mutually exclusive: P (A1, A2) = 0

q The aforementioned properties make {(A1, P (A1)), (A2, P (A2))} a valid (prior) probability
model [BayesRules!] :

(1) it accounts for all possible events (all people must be HIV_pos or HIV_pos),

(2) it assigns prior probabilities to each event, and

(3) these probabilities sum to one.
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Bayes Classifier
Combined Conditional Events: P (Ai | B1, . . . , Bp)

Let P (Ai | B1, . . . , Bp) denote the probability of the occurrence of event Ai given that
the events (conditions) B1, . . . , Bp are known to have occurred.
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Bayes Classifier
Combined Conditional Events: P (Ai | B1, . . . , Bp)

Let P (Ai | B1, . . . , Bp) denote the probability of the occurrence of event Ai given that
the events (conditions) B1, . . . , Bp are known to have occurred.

Applied to a classification problem [example] :

q Ai corresponds to an event of the kind “C=ci”,
the Bj, j = 1, . . . , p, correspond to p events of the kind “Xj=xj”.

q observable relation (in the regular world) : B1, . . . , Bp | Ai

q reversed relation (in a diagnosis setting) : Ai | B1, . . . , Bp
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Bayes Classifier
Combined Conditional Events: P (Ai | B1, . . . , Bp)

Let P (Ai | B1, . . . , Bp) denote the probability of the occurrence of event Ai given that
the events (conditions) B1, . . . , Bp are known to have occurred.

Applied to a classification problem [example] :

q Ai corresponds to an event of the kind “C=ci”,
the Bj, j = 1, . . . , p, correspond to p events of the kind “Xj=xj”.

q observable relation (in the regular world) : B1, . . . , Bp | Ai

q reversed relation (in a diagnosis setting) : Ai | B1, . . . , Bp

If sufficient data for estimating P (Ai) and P (B1, . . . , Bp | Ai) is provided, then
P (Ai | B1, . . . , Bp) can be computed with the Theorem of Bayes:

P (Ai | B1, . . . , Bp) =
P (Ai) · P (B1, . . . , Bp | Ai)

P (B1, . . . , Bp)
(?)
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Remarks [
::::::::::::
information

:::::
gain

:::
for

::::::::::::::
classification] :

q How probability theory is applied to classification problem solving:

– Classes and feature-value pairs are interpreted as events. The relation to an underlying
sample space Ω, Ω = {ω1, . . . , ωn}, from which the events are subsets, is not considered.

– Observable or measurable and possibly causal relation: It is (or was in the past)
regularly observed that in situation Ai (e.g. a disease) the symptoms B1, . . . , Bp occur.
This could be described as “forward reasoning”.

– ”Backward reasoning”, typically an analysis or diagnosis situation: The symptoms
B1, . . . , Bp are observed, and one is interested in the probability that Ai is given or has
occurred.

– Based on the prior probabilities of the classes (aka class priors), P (C=ci), and the

:::::::::::::::::::::
class-conditional

::::::::::::::::
probabilities of the observable relations (aka likelihoods),

P (X1=x1, . . . ,Xp=xp | C=ci), the
::::::::::::::
conditional

:::::::
class

::::::::::::::::
probabilities in an analysis situation,

P (C=ci | X1=x1, . . . ,Xp=xp), can be computed with the Theorem of Bayes.

q The Xj and C denote random variables with ranges of the respective feature domains and C
respectively.

q Note that a conditional event “Xj=xj | C=ci” does not necessarily model a cause-effect
relation: the event “C=ci” may cause—but does not need to cause—the event “Xj=xj”.
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Remarks: (continued)

q
:::::::::
Recap. Alternative and semantically equivalent notations for P (Ai | B1, . . . , Bp) :

1. P (Ai | B1, . . . , Bp)

2. P (Ai | B1 ∧ . . . ∧Bp)

3. P (Ai | B1 ∩ . . . ∩Bp)
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Bayes Classifier
Naive Bayes

The compilation of a database from which reliable values for the P (B1, . . . , Bp | Ai)

can be obtained is often infeasible. The way out:

(a) Naive Bayes Assumption: “Given condition Ai, the B1, . . . , Bp are statistically
independent” (aka the Bj are conditionally independent ). Notation:

P (B1, . . . , Bp | Ai)
NB
=

p∏
j=1

P (Bj | Ai)
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Bayes Classifier
Naive Bayes

The compilation of a database from which reliable values for the P (B1, . . . , Bp | Ai)

can be obtained is often infeasible. The way out:

(a) Naive Bayes Assumption: “Given condition Ai, the B1, . . . , Bp are statistically
independent” (aka the Bj are conditionally independent ). Notation:

P (B1, . . . , Bp | Ai)
NB
=

p∏
j=1

P (Bj | Ai)

(b) Given a set {A1, . . . , Ak} of alternative events (causes, classes), the most
probable event under the Naive Bayes assumption, ANB, can be computed
with the Theorem of Bayes (?) :

argmax
Ai∈{A1,...,Ak}

P (Ai) · P (B1, . . . , Bp | Ai)

P (B1, . . . , Bp)
NB
= argmax

Ai∈{A1,...,Ak}
P (Ai) ·

p∏
j=1

P (Bj | Ai) = ANB
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Bayes Classifier
Naive Bayes

The compilation of a database from which reliable values for the P (B1, . . . , Bp | Ai)

can be obtained is often infeasible. The way out:

(a) Naive Bayes Assumption: “Given condition Ai, the B1, . . . , Bp are statistically
independent” (aka the Bj are conditionally independent ). Notation:

P (B1, . . . , Bp | Ai)
NB
=

p∏
j=1

P (Bj | Ai)

(b) Given a set {A1, . . . , Ak} of alternative events (causes, classes), the most
probable event under the Naive Bayes assumption, ANB, can be computed
with the Theorem of Bayes (?) :

argmax
Ai∈{A1,...,Ak}

P (Ai) · P (B1, . . . , Bp | Ai)

P (B1, . . . , Bp)
NB
= argmax

Ai∈{A1,...,Ak}
P (Ai) ·

p∏
j=1

P (Bj | Ai) = ANB
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Remarks:

q Rationale for the Naive Bayes Assumption. Usually the probability P (B1, . . . , Bp | Ai) cannot
be estimated: Suppose that we are given p features and that the domains of the features
contain minimum m values each.

Then, for as many as mp different feature vectors the probabilities P (B1=x1
, . . . , Bp=xp

| Ai) are
required, where Bj=xj

denotes the event where feature j has value xj. Moreover, in order to
provide reliable estimates, each possible p-dimensional feature vector (x1, . . . , xp) has to
occur in the database sufficiently often.

By contrast, the estimation of the probabilities under the Naive Bayes Assumption,
P (Bj=xj

| Ai), can be derived from a significantly smaller database since only p ·m different
“Xj=xj”-events, Bj=xj

, are distinguished altogether.

q If the Naive Bayes Assumption applies, then the event ANB will maximize also the posterior
probability P (Ai | B1, . . . , Bp) as defined by the Theorem of Bayes.

q To identify the most probable event, the denominator in the argmax term, P (B1, . . . , Bp),
needs not to be estimated: it is constant and has no influence on the ranking among the
{A1, . . . , Ak}. See the following identities:

argmaxAi
P (Ai | B) = argmaxAi

P (B|Ai)·P (Ai)
P (B) Bayes rule.

= argmaxAi
P (B | Ai) · P (Ai) P (B) does not depend onAi.
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Remarks: (continued)

q Given a multiset of examples D, then “learning” or “training” a classifier via Naive Bayes
means to estimate the prior probabilities (class priors) P (Ai), with Ai := C=ci, i = 1, . . . , k, as
well as the probabilities of the observable relations P (Bj=xj

| Ai), with Bj=xj
:= Xj=xj,

j = 1, . . . , p.

These probabilities are used in the argmax-term for ANB, which encodes the “learned”
hypothesis and functions as a classifier for new feature vectors.

q The hypothesis space H is the space of candidate target functions that exploit the
probabilities P (Ai) and P (Bj=xj

| Ai) to map from a set of “feature events”, each denoted as
Bj=xj

, onto a “class event”, denoted as Ai. Under Naive Bayes the hypothesis space H is not
explored, but the sought hypothesis is directly constructed as ANB.

q In general, the Naive Bayes classifier is not linear in the sense that the generated decision
boundary in the input space is non-linear (= is not a hyperplane). If the likelihoods,
P (X1=x1, . . . ,Xp=xp | C=ci), are from exponential families, the Naive Bayes classifier
corresponds to a linear classifier in a particular feature space. [stackexchange]

q The Naive Bayes classifier belongs to the class of generative models, which model
conditional probability mass (or density) functions. By contrast, discriminative models
minimize the loss or misclassification error. [Wikipedia]
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Bayes Classifier
Naive Bayes (continued)

In addition to the Naive Bayes Assumption, let the following conditions apply:

(c) The set of the k classes is complete:
k∑
i=1

P (Ai) = 1

(d) The Ai are mutually exclusive: P (Ai, Aι) = 0, 1 ≤ i, ι ≤ k, i 6= ι
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Bayes Classifier
Naive Bayes (continued)

In addition to the Naive Bayes Assumption, let the following conditions apply:

(c) The set of the k classes is complete:
k∑
i=1

P (Ai) = 1

(d) The Ai are mutually exclusive: P (Ai, Aι) = 0, 1 ≤ i, ι ≤ k, i 6= ι

Then holds:

P (B1, . . . , Bp)
c,d
=

k∑
i=1

P (Ai) · P (B1, . . . , Bp | Ai) (
:::::::::::
theorem

:::
of

::::::
total

::::::::::::::
probability)

NB
=

k∑
i=1

P (Ai) ·
p∏
j=1

P (Bj | Ai) (Naive Bayes Assumption)
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Bayes Classifier
Naive Bayes (continued)

In addition to the Naive Bayes Assumption, let the following conditions apply:

(c) The set of the k classes is complete:
k∑
i=1

P (Ai) = 1

(d) The Ai are mutually exclusive: P (Ai, Aι) = 0, 1 ≤ i, ι ≤ k, i 6= ι

Then holds:

P (B1, . . . , Bp)
c,d
=

k∑
i=1

P (Ai) · P (B1, . . . , Bp | Ai) (
:::::::::::
theorem

:::
of

::::::
total

::::::::::::::
probability)

NB
=

k∑
i=1

P (Ai) ·
p∏
j=1

P (Bj | Ai) (Naive Bayes Assumption)

With the Theorem of Bayes (?) it follows for the conditional probabilities:

P (Ai | B1, . . . , Bp) =
P (Ai) · P (B1, . . . , Bp | Ai)

P (B1, . . . , Bp)

NB,c,d
=

P (Ai) ·
∏p

j=1 P (Bj | Ai)∑k
i=1 P (Ai) ·

∏p
j=1 P (Bj | Ai)
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Remarks:

q A ranking of the A1, . . . , Ak can be computed via argmax
Ai∈{A1,...,Ak}

P (Ai) ·
∏p

j=1 P (Bj | Ai).

q If both (c) completeness and (d) mutually exclusiveness of the Ai can be presumed, the total
of all posterior probabilities must add up to one:

∑k
i=1 P (Ai | B1, . . . , Bp) = 1.

As a consequence, P (B1, . . . , Bp) can be estimated and the rank order values for the Ai be
translated into the respective prior probabilities, P (Ai | B1, . . . , Bp).

The normalization is obtained by dividing a rank order value by the rank order values total,∑k
i=1 P (Ai) ·

∏p
j=1 P (Bj | Ai).

q Condition (c) and (d), make {(Ai, P (Ai)) | i = 1, . . . k} a valid (prior) probability model.

q The derivation above will in fact yield the true prior probabilities P (Ai | B1, . . . , Bp), if the
Naive Bayes assumption along with the completeness and exclusiveness of the Ai hold.

q Regarding notation. In the last fraction, an event denoted by Ai occurs in both the numerator
and denominator. Note that these are different events because the index i is bound
differently: for the Ai in the numerator by P (Ai | B1, . . . , Bp), and for the Ai in denominator
by

∑k
i=1.

ML:VII-90 Bayesian Learning © STEIN 2026



Bayes Classifier
Naive Bayes: Classifier Construction Summary

Let X be a multiset of feature vectors, C a set of k classes, and D ⊆ X × C a
multiset of examples. Then the k classes correspond to the events A1, . . . , Ak, and
the p feature values of some x ∈ X correspond to the events B1=x1, . . . , Bp=xp.
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Bayes Classifier
Naive Bayes: Classifier Construction Summary

Let X be a multiset of feature vectors, C a set of k classes, and D ⊆ X × C a
multiset of examples. Then the k classes correspond to the events A1, . . . , Ak, and
the p feature values of some x ∈ X correspond to the events B1=x1, . . . , Bp=xp.

Construction and application of a Naive Bayes classifier:

1. Using D, estimate the P (Ai), Ai := C=ci, i = 1, . . . , k.

2. Using D, estimate the P (Bj=xj | Ai), Bj=xj := Xj=xj, j = 1, . . . , p.

3. Classify feature vector x as ANB, iff

ANB = argmax
Ai∈{A1,...,Ak}

P̂ (Ai) ·
∏
xj ∈x
j=1,...,p

P̂ (Bj=xj | Ai)

4. Given (c) and (d), estimate the posterior probabilities P (Ai | B1, . . . , Bp) by
normalizing P̂ (Ai) ·

∏
xj ∈x
j=1,...,p

P̂ (Bj=xj | Ai) with
∑k

i=1 P̂ (Ai) ·
∏p

j=1 P̂ (Bj | Ai)

ML:VII-92 Bayesian Learning © STEIN 2026



Remarks:

q There are at most p ·m different events Bj=xj
, if m is an upper bound for the size of the p

feature domains.

q
:::::::::
Recap. The probabilities, denoted as P (), are unknown and are estimated by the relative
frequencies, denoted as P̂ ().

q The Naive Bayes approach is adequate for example sets D of medium size up to very large
sizes.

q Strictly speaking, the Naive Bayes approach presumes that the feature values in D are
“statistically independent given the classes of the target concept”. Experience in the field of
text classification shows that convincing classification results are achieved even if the Naive
Bayes Assumption does not hold.

q If, in addition to the rank order values, also posterior probabilities shall be computed, both the
completeness (c) and the exclusiveness (d) of the target concept classes are required.

– Requirement (c) is also called Closed World Assumption.
– Requirement (d) is also called Single Fault Assumption.
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Bayes Classifier
Naive Bayes: Example

A multiset of examples D:

Outlook Temperature Humidity Wind EnjoySurfing

1 sunny hot high weak no
2 sunny hot high strong no
3 overcast hot high weak yes
4 rain mild high weak yes
5 rain cold normal weak yes
6 rain cold normal strong no
7 overcast cold normal strong yes
8 sunny mild high weak no
9 sunny cold normal weak yes

10 rain mild normal weak yes
11 sunny mild normal strong yes
12 overcast mild high strong yes
13 overcast hot normal weak yes
14 rain mild high strong no

Learning task: Compute the class c of feature vector x = (sunny, cold,high, strong).
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Bayes Classifier
Naive Bayes: Example (continued)

Let Bj=xj denote the event that feature j has value xj. Then, the feature vector
x = (sunny, cold,high, strong) gives rise to the following four events:

B1=x1 : Outlook=sunny

B2=x2 : Temperature=cold

B3=x3 : Humidity=high

B4=x4 : Wind=strong
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Bayes Classifier
Naive Bayes: Example (continued)

Let Bj=xj denote the event that feature j has value xj. Then, the feature vector
x = (sunny, cold,high, strong) gives rise to the following four events:

B1=x1 : Outlook=sunny

B2=x2 : Temperature=cold

B3=x3 : Humidity=high

B4=x4 : Wind=strong

Computation of ANB for x :

ANB = argmax
Ai∈ {EnjoySurfing=yes,

EnjoySurfing=no}

P̂ (Ai) ·
∏
xj ∈x
j=1,...,4

P̂ (Bj=xj | Ai)

= argmax
Ai∈ {EnjoySurfing=yes,

EnjoySurfing=no}

P̂ (Ai) · P̂ (Outlook=sunny | Ai) · P̂ (Temperature=cold | Ai) ·

P̂ (Humidity=high | Ai) · P̂ (Wind=strong | Ai)
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Bayes Classifier
Naive Bayes: Example (continued)

To classify x altogether 2 + 4 · 2 probabilities are estimated from the data D :

q P̂ (EnjoySurfing=yes) = 9
14 = 0.64

q P̂ (EnjoySurfing=no) = 5
14 = 0.36

q P̂ (Wind=strong | EnjoySurfing=yes) = 3
9 = 0.33

q . . .
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Bayes Classifier
Naive Bayes: Example (continued)

To classify x altogether 2 + 4 · 2 probabilities are estimated from the data D :

q P̂ (EnjoySurfing=yes) = 9
14 = 0.64

q P̂ (EnjoySurfing=no) = 5
14 = 0.36

q P̂ (Wind=strong | EnjoySurfing=yes) = 3
9 = 0.33

q . . .

Ü Ranking:

1. P̂ (EnjoySurfing=no) ·
∏

xj ∈x P̂ (Bj=xj | EnjoySurfing=no) = 0.0206

2. P̂ (EnjoySurfing=yes) ·
∏

xj ∈x P̂ (Bj=xj | EnjoySurfing=yes) = 0.0053
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Bayes Classifier
Naive Bayes: Example (continued)

To classify x altogether 2 + 4 · 2 probabilities are estimated from the data D :

q P̂ (EnjoySurfing=yes) = 9
14 = 0.64

q P̂ (EnjoySurfing=no) = 5
14 = 0.36

q P̂ (Wind=strong | EnjoySurfing=yes) = 3
9 = 0.33

q . . .

Ü Ranking:

1. P̂ (EnjoySurfing=no) ·
∏

xj ∈x P̂ (Bj=xj | EnjoySurfing=no) = 0.0206

2. P̂ (EnjoySurfing=yes) ·
∏

xj ∈x P̂ (Bj=xj | EnjoySurfing=yes) = 0.0053

Ü Probabilities: (subject to conditions (c) and (d))

1. P̂ (EnjoySurfing=no | X=x) = 0.0206
0.0053+0.0206 ≈ 80%

2. P̂ (EnjoySurfing=yes | X=x) = 0.0053
0.0053+0.0206 ≈ 20%

ML:VII-99 Bayesian Learning © STEIN 2026



Remarks:

q X denotes a four-dimensional random variable (a random vector) with possible realizations as
defined in the data D.
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