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Bayes Classifier
Generative Approach to Classification Problems
Setting:

0 X is a multiset of feature vectors.

o C'is a set of classes.

0 D={(xy,c1),...,(Xn,cn)} € X x Cis amultiset of examples.

Learning task:
o Fit D using joint probabilities p() between features and classes.



Bayes Classifier
Bayes Theorem

Theorem 12 (Bayes [1701-1761])

Let (2, P(2), P) be a probability space, and let A4, ..., A; be mutually exclusive
events with Q= A, U...UA;, P(A;) >0,i=1,...,k. Then for an event B € P({))
with P(B) > 0 holds:

P(Ai)- P(B | Ai)

k

S P(4)- P(B| A)

1=1

P(A; | B) =

P(A;) is called prior probability of A;.
P(A; | B) is called posterior probability of A;.



Bayes Classifier
Bayes Theorem (continued)

Proof (Bayes Theorem)
From the conditional probabilities for P(B | A;) and P(A; | B) follows:

P(BNA;)  P(A) - P(B|A)
P(B) P(B)

P(AHB) -


https://webis.de/downloads/lecturenotes/machine-learning/unit-en-probability-basics.pdf#conditional-probability-deductions

Bayes Classifier
Bayes Theorem (continued)

Proof (Bayes Theorem)
From the conditional probabilities for P(B | A;) and P(A; | B) follows:

P(BNA;)  P(A) - P(B|A)
P(B) P(B)

P(AHB) -

Applying the theorem of total probability to P(B),

ZP P(B | A),

will yield the claim.


https://webis.de/downloads/lecturenotes/machine-learning/unit-en-probability-basics.pdf#conditional-probability-deductions
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-probability-basics.pdf#total-probability

Bayes Classifier
Example: Reasoning About a Disease [Kirchgessner 2009]

1. A . HIV_pos P(A;) =0.001

B :  test pos



Bayes Classifier
Example: Reasoning About a Disease [Kirchgessner 2009]

1. A . HIV_pos P(A;) =0.001
= A . HIV _neg P(AQ) = P(A_l) =1—- P(Al) = (0.999
B :  test pos



Bayes Classifier

Example: Reasoning About a Disease

1. A
= AQ
B

2. B‘Al:
3. B‘Ag:

HIV _pos
HIV _neg

test_pos

test_pos | HIV_pos
test_pos | HIV_neg

[Kirchgessner 2009]

P(A;) = 0.001
P(Ay) = P(A)) = 1 — P(A,) = 0.999

P(B | A;) = 0.98
P(B | 4;) = 0.03



Bayes Classifier
Example: Reasoning About a Disease [Kirchgessner 2009]

1. A . HIV_pos P(A;) =0.001
= A . HIV _neg P(AQ) = P(A_l) =1—- P(Al) = (0.999
B :  test_pos = P(B)=Y%.7,P(A)-P(B|A;)=0.031

2. B| Ay, : test pos| HIV_pos P(B| A;)=0.98
3. B| Ay : test pos| HIV_neg P(B | Ay) =0.03
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Example: Reasoning About a Disease [Kirchgessner 2009]

1. A . HIV_pos P(A;) =0.001
= A . HIV _neg P(AQ) = P(A_l) =1—- P(Al) = (0.999

B :  test_pos = P(B)=Y%.7,P(A)-P(B|A;)=0.031
2. | Ay 1 test pos | HIV_pos P(B ] A)=0.98

3. | Ay test_pos | HIV_neg P(B | Ay) =0.03



Bayes Classifier
Example: Reasoning About a Disease [Kirchgessner 2009]

1. A . HIV_pos P(A;) =0.001
= A . HIV _neg P(AQ) = P(A_l) =1—- P(Al) = (0.999
B :  test_pos = P(B)=Y%.7,P(A)-P(B|A;)=0.031
2. | Ay 1 test pos | HIV_pos P(B ] A)=0.98
3. | Ay test_pos | HIV_neg P(B | Ay) =0.03

Simple Bayes rule [subjectivist] :
P(Ay) - P(B | A)
P(B)

P(HIV_pos | test pos) = P(A, | B) =


https://webis.de/downloads/lecturenotes/machine-learning/unit-en-probability-basics.pdf#subjectivism-bayesian-probability

Bayes Classifier
Example: Reasoning About a Disease [Kirchgessner 2009]

1. A . HIV_pos P(A;) =0.001
= A . HIV _neg P(AQ) = P(A_l) =1—- P(Al) = (0.999
B :  test_pos = P(B)=Y%.7,P(A)-P(B|A;)=0.031
2. | Ay 1 test pos | HIV_pos P(B ] A)=0.98
3. | Ay test_pos | HIV_neg P(B | Ay) =0.03

Simple Bayes rule [subjectivist] :
P(Ay)-P(B | A)  0.001-0.98

= 0.032 = 3.2
P(B) 0.031 %

P(HIV_pos | test pos) = P(A, | B) =


https://webis.de/downloads/lecturenotes/machine-learning/unit-en-probability-basics.pdf#subjectivism-bayesian-probability

Bayes Classifier
Example: Reasoning About a Disease [Kirchgessner 2009]

1. A . HIV_pos P(A;) =0.001
= A . HIV _neg P(AQ) = P(A_1> =1—- P(A1> = (0.999
B :  test_pos = P(B)=Y%.7,P(A)-P(B|A;)=0.031
2. | Ay 1 test pos | HIV_pos P(B ] A)=0.98
3. | Ay test_pos | HIV_neg P(B | Ay) =0.03

Simple Bayes rule [subjectivist] :
P(Ay)-P(B | A)  0.001-0.98

= 0.032 = 3.2
P(B) 0.031 %

P(HIV_pos | test pos) = P(A, | B) =

Sample size Disease statistics (prior knowledge) Diagnosis (= hypothesis selection)

— 98 (test_pos)

— 100 (HIV_pos)

100 000

—— 2997 (test_pos)

99900 (HIV_neg)



https://webis.de/downloads/lecturenotes/machine-learning/unit-en-probability-basics.pdf#subjectivism-bayesian-probability

Remarks (prior probability model) :

O Inthe example it is presumed that
— the set of diagnoses is complete; i.e., there is no possible third diagnosis A3, and

— that A; and A, are mutually exclusive: P(A;, As) =0

Q The aforementioned properties make {(A;, P(A1)), (A2, P(As))} a valid (prior) probability

model [BayesRules!] :
(1) it accounts for all possible events (all people must be HIV_pos or HIV _pos),

(2) it assigns prior probabilities to each event, and
(3) these probabilities sum to one.


https://www.bayesrulesbook.com/chapter-2.html#prior-probability-model

Bayes Classifier
Combined Conditional Events: P(A; | By, ..., B,)

Let P(A; | By, ..., B,) denote the probability of the occurrence of event A; given that
the events (conditions) B, ..., B, are known to have occurred.



Bayes Classifier
Combined Conditional Events: P(A; | By, ..., B))

Let P(A; | By, ..., B,) denote the probability of the occurrence of event A; given that
the events (conditions) B, ..., B, are known to have occurred.

o A; corresponds to an event of the kind “C=c¢;”,
the B;, j =1,...,p, correspond to p events of the kind “X,=z;".

a observable relation (in the regular world) : B,,..., B, | A,

o reversed relation (in a diagnosis setting): A, | By,.... B,

ML:VII-78 Bayesian Learning ©STEIN 2026



Bayes Classifier
Combined Conditional Events: P(A; | By, ..., B,)

Let P(A; | By, ..., B,) denote the probability of the occurrence of event A; given that
the events (conditions) B, ..., B, are known to have occurred.

o A; corresponds to an event of the kind “C=c¢;”,
the B;, j =1,...,p, correspond to p events of the kind “X,=z;".

a observable relation (in the regular world) : B,,..., B, | A,

0 reversed relation (in a diagnosis setting): A; | By, ..., B,

If sufficient data for estimating P(A4;) and P(By,..., B, | A;) is provided, then

P(A) - P(By,...,B, | A))

P(A; | By,...,B,) = P B
... B,




Remarks [information gain for classification] :
Q How probability theory is applied to classification problem solving:

Classes and feature-value pairs are interpreted as events. The relation to an underlying
sample space 2, Q = {w1,...,w,}, from which the events are subsets, is not considered.

Observable or measurable and possibly causal relation: It is (or was in the past)
regularly observed that in situation A; (e.g. a disease) the symptoms By, ..., B, occur.
This could be described as “forward reasoning”.

"Backward reasoning”, typically an analysis or diagnosis situation: The symptoms
By, ..., B, are observed, and one is interested in the probability that A; is given or has
occurred.

Based on the prior probabilities of the classes (aka class priors), P(C=c¢;), and the
class-conditional probabilities of the observable relations (aka likelihoods),

P( | C=c,), the conditional class probabilities in an analysis situation,
P(C=¢; | ), can be computed with the Theorem of Bayes.

O The X; and C denote random variables with ranges of the respective feature domains and C
respectively.

0O Note that a conditional event “X;=xz; | C=c;” does not necessarily model a cause-effect
relation: the event “C=c;” may cause—but does not need to cause—the event “X;=x;".


https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-impurity.pdf#remarks-information-gain-for-classification
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-evaluating-effectiveness.pdf#class-conditional-probability-function
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-evaluating-effectiveness.pdf#conditional-class-probability-function

Remarks: (continued)
0 Recap. Alternative and semantically equivalent notations for P(A4; | By, ..., B,) !
1. P(4;| By,...,By)
2. P(A;| BiA...\B,)
3. P(A;|BiN...NB))


https://webis.de/downloads/lecturenotes/machine-learning/unit-en-probability-basics.pdf#syntax-event-notation

Bayes Classifier
Naive Bayes

The compilation of a database from which reliable values for the P(By, ..., B, | 4)
can be obtained is often infeasible. The way out:

(a) Naive Bayes Assumption: “Given condition A4;, the By, ..., B, are statistically
independent” (aka the B; are conditionally independent). Notation:

P(By,...,B, | A) = HP



Bayes Classifier
Naive Bayes

The compilation of a database from which reliable values for the P(By, ..., B, | 4)
can be obtained is often infeasible. The way out:

(a) Naive Bayes Assumption: “Given condition A4;, the By, ..., B, are statistically
independent” (aka the B; are conditionally independent). Notation:

P(By,...,B, | A) = HP

(b) Given aset {Ay,..., A} of alternative events (causes, classes), the most
probable event under the Naive Bayes assumption, Ang, can be computed

argmax P(A;)- P(By,...,B, | 4))
AiE{Al ..... Ak} P<Bl7 Tt Bp)




Bayes Classifier
Naive Bayes

The compilation of a database from which reliable values for the P(By, ..., B, | 4)
can be obtained is often infeasible. The way out:

(a) Naive Bayes Assumption: “Given condition A4;, the By, ..., B, are statistically
independent” (aka the B; are conditionally independent). Notation:

P(By,...,B, | A) = HP

(b) Given aset {Ay,..., A} of alternative events (causes, classes), the most
probable event under the Naive Bayes assumption, Ang, can be computed

P(A)-P(By,...,B, | 4 -
argmax A) PBy,. ., By | A) "B argmax P(A;) - HP(Bj | A;)) = Ans
AiE{Al ..... Ak} P<Bl7 ) Bp) A7;€{A1 ..... Ak} j=1




Remarks:

0O Rationale for the Naive Bayes Assumption. Usually the probability P(B;,..., B, | A;) cannot
be estimated: Suppose that we are given p features and that the domains of the features
contain minimum m values each.

Then, for as many as m?” different feature vectors the probabilities P(B,—,,, ..., By, | A;) are
required, where B;_,, denotes the event where feature j has value ;. Moreover, in order to
provide reliable estimates, each possible p-dimensional feature vector (x,...,z,) has to
occur in the database sufficiently often.

By contrast, the estimation of the probabilities under the Naive Bayes Assumption,
P(Bj—., | Ai), can be derived from a significantly smaller database since only p - m different
“Xj=xz;"-events, B;_,, are distinguished altogether.

Q If the Naive Bayes Assumption applies, then the event Ang will maximize also the posterior

O To identify the most probable event, the denominator in the argmax term, P(B;, ..., B,),
needs not to be estimated: it is constant and has no influence on the ranking among the
{Ay,..., A}. See the following identities:

P(B|A;)-P(A)

argmax,, P(A; | B) = argmax,, — 5

= argmax, P(B| A;) - P(4))



Remarks: (continued)

O Given a multiset of examples D, then “learning” or “training” a classifier via Naive Bayes
means to estimate the prior probabilities (class priors) P(A;), with A; .= C=¢;, i =1,... k, as
well as the probabilities of the observable relations P(B;—,, | A;), with B;_, = X;=x;,
j=1,...,p.

hypothesis and functions as a classifier for new feature vectors.

O The hypothesis space H is the space of candidate target functions that exploit the
probabilities P(A;) and P(B;—,, | A;) to map from a set of “feature events”, each denoted as
B;_.,, onto a “class event”, denoted as A;. Under Naive Bayes the hypothesis space H is not
explored, but the sought hypothesis is directly constructed as Ayg.

a In general, the Naive Bayes classifier is not linear in the sense that the generated decision

P(Xi=x,...,X,=z, | C=¢;), are from exponential families, the Naive Bayes classifier
corresponds to a linear classifier in a particular feature space. [stackexchange]

0 The Naive Bayes classifier belongs to the class of generative models, which model
conditional probability mass (or density) functions. By contrast, discriminative models
minimize the loss or misclassification error. [Wikipedia]


https://stats.stackexchange.com/questions/142215/how-is-naive-bayes-a-linear-classifier?#answer-142258
https://en.wikipedia.org/wiki/Linear_classifier#Generative_models_vs._discriminative_models

Bayes Classifier
Naive Bayes (continued)

k
(c) The set of the k classes is complete: » " P(A;) =1

1=1
(d) The A; are mutually exclusive: P(A;,A,) =0, 1 <i, 1 <k, i#.



Bayes Classifier
Naive Bayes (continued)

k
(c) The set of the k classes is complete: » ~ P(A

1=1

(d) The A; are mutually exclusive: P(A;,A,) =0, 1 <i, 1 <k, i#.

Then holds: .
P(B,....,B) ¥ Y P(4)-P(By,...,B, | A)


machine-learning/unit-en-probability-basics.pdf#total-probability

Bayes Classifier
Naive Bayes (continued)

k
(c) The set of the k classes is complete: » ~ P(A

1=1

(d) The A; are mutually exclusive: P(A;,A,) =0, 1 <i, 1 <k, i#.

Then holds: .
P(By,...,B,) = Y P(A;)-P(By,...,B, | A)

L SVSUEN | IR

Nod  P(Ai) - [T P(B; | 4)
> i P(A) - TT-, P(B; | A))



machine-learning/unit-en-probability-basics.pdf#total-probability

Remarks:

a

a

A ranking of the Ay, ..., A; can be computed via argmax P(A;) - [[}_, P(B; | Ai).

If both (c) completeness and (d) mutually exclusiveness of the A; can be presumed, the total
of all posterior probabilities must add up to one: Zle P(A; | By,...,B,) =1.

As a consequence, P(B;,..., B,) can be estimated and the rank order values for the A; be
translated into the respective prior probabilities, P(A; | By, ..., B)).

The normalization is obtained by dividing a rank order value by the rank order values total,
>oi P(A) T P(B; | A

The derivation above will in fact yield the true prior probabilities P(A; | By, ..., B,), if the
Naive Bayes assumption along with the completeness and exclusiveness of the A; hold.

Regarding notation. In the last fraction, an event denoted by A; occurs in both the numerator
and denominator. Note that these are different events because the index 7 is bound
differently: for the A, in the numerator by P(A; | By, ..., B,), and for the A; in denominator

by Zf:l-



Bayes Classifier
Naive Bayes: Classifier Construction Summary

Let X be a multiset of feature vectors, C' a set of k£ classes,and D C X x C' a
multiset of examples. Then the k classes correspond to the events A, ..., A;, and
the p feature values of some x € X correspond to the events Bi—,,, ..., By=,.



Bayes Classifier
Naive Bayes: Classifier Construction Summary

Let X be a multiset of feature vectors, C' a set of k classes,and D C X x C' a
multiset of examples. Then the k classes correspond to the events A4, ..., A;, and

the p feature values of some x € X correspond to the events By, ..., By—;,.

Construction and application of a Naive Bayes classifier:

1. Using D, estimate the P(A;), A, = C—c,,i—1.... L
2. Using D, estimate the P(B;—,, | Ai), B, = Xj=uv;, )= 1.....p.
3. Classify feature vector x as Ang, iff

Ang = argmax P(AZ-)- H p(Bj:xj | A))

4. Given (c) and (d), estimate the posterior probabilities P(A; | By, ..., B,) by
normalizing P(A;) -[] «ex P(Bj—y, | A;) with 0 P(A;) - TI'_, P(B; | A)
=1

ML:VII-92 Bayesian Learning ©STEIN 2026



Remarks:

QO There are at most p - m different events B;_, , if m is an upper bound for the size of the p
feature domains.

0 Recap. The probabilities, denoted as P(), are unknown and are estimated by the relative
frequencies, denoted as P().

a The Naive Bayes approach is adequate for example sets D of medium size up to very large
sizes.

Q Strictly speaking, the Naive Bayes approach presumes that the feature values in D are
“statistically independent given the classes of the target concept”. Experience in the field of
text classification shows that convincing classification results are achieved even if the Naive
Bayes Assumption does not hold.

Q If, in addition to the rank order values, also posterior probabilities shall be computed, both the
completeness (c) and the exclusiveness (d) of the target concept classes are required.

— Requirement (c) is also called Closed World Assumption.
— Requirement (d) is also called Single Fault Assumption.


https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-algorithms.pdf#notation-estimated-probabilities

Bayes Classifier
Naive Bayes: Example

A multiset of examples D:

Outlook Temperature Humidity Wind

1 sunny hot high weak no
2 sunny hot high strong no
3 overcast hot high weak yes
4 rain mild high weak yes
) rain cold normal weak yes
6 rain cold normal strong no
7 overcast cold normal strong yes
8 sunny mild high weak no
9 sunny cold normal weak yes
10 rain mild normal weak yes
11 sunny mild normal strong yes
12 overcast mild high strong yes
13 overcast hot normal weak yes
14 rain mild high strong no

Learning task: Compute the class ¢ of feature vector x = (sunny, cold, high, strong).



Bayes Classifier
Naive Bayes: Example (continued)

Let B;_,, denote the event that feature ; has value z;. Then, the feature vector
x = (sunny, cold, high, strong) gives rise to the following four events:

Bi—;, : Outlook=sunny
By, : Temperature=cold
Bs_., : Humidity=high

. Wind=strong



Bayes Classifier
Naive Bayes: Example (continued)

Let B;—,, denote the event that feature j has value z;. Then, the feature vector
x = (sunny, cold, high, strong) gives rise to the following four events:

Bi—,, : Outlook=sunny
By, : Temperature=cold
Bs—., : Humidity—high
By—,, : Wind=strong

Ang = argmax P(A) - I P(Bj=, | A)

A;€ {EnjoySurfing=yes,
EnjoySurfing=no}

= argmax P(A;) - P(Outlook=sunny | A;) - P(Temperature=cold | A;) -

A€ {EnjoySurfing=yes. P(Humidity=high | A;) - P(Wind=strong | A;)
EnjoySurfing=no}

ML:VII-96 Bayesian Learning ©STEIN 2026



Bayes Classifier
Naive Bayes: Example (continued)

| lf’(EnjoySurfing:yes) = % = 0.64
| f)(EnjoySurfing:no) = % = 0.36

a P(Wind=strong | EnjoySurfing=yes) = 2 =10.33



Bayes Classifier
Naive Bayes: Example (continued)

To classify x altogether 2 + 4 -2 probabilities are estimated from the data D :

a P (EnjoySurfing=yes) = —)4 = 0.64

)

0 P(EnjoySurﬁng:no) — % = 0.36
Q p(Wind:strong | EnjoySurfing=yes) = % = 0.33

Q

=» Ranking:

A

1. P(EnjoySurfing:no) 11 P(Bj., | EnjoySurfing=no) = 0.0206

ijX

2. P(EnjoySurfing=yes) - ij cx P(Bj:xj | EnjoySurfing=yes) = 0.0053
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Bayes Classifier
Naive Bayes: Example (continued)

Ranking:

A

1. P(EnjoySurfing=no) - [] P(Bj., | EnjoySurfing=no) = 0.0206

IjGX

2. P(EnjoySurfing=yes) - [ P(Bj:xj | EnjoySurfing=yes) = 0.0053

ijX

Probabilities:

1. p(EnjoySurfing:no | X=x) = 0.00(5)30428.60206 ~ 80%

2. P(EnjoySurfing:yes | X=x) = 000@3038?0206 ~ 20%



Remarks:

a Xdenotes a four-dimensional random variable (a random vector) with possible realizations as
defined in the data D.



