#![allow(clippy::needless_lifetimes)]
use crate::CowImage::*;
use crate::HashVals::*;
use crate::{BitSet, HashCtxt, Image};
use self::HashAlg::*;
mod blockhash;
#[derive(Clone, Copy, Debug, PartialEq, Eq, Serialize, Deserialize)]
pub enum HashAlg {
Mean,
Gradient,
VertGradient,
DoubleGradient,
Blockhash,
}
fn next_multiple_of_2(x: u32) -> u32 {
(x + 1) & !1
}
fn next_multiple_of_4(x: u32) -> u32 {
(x + 3) & !3
}
impl HashAlg {
pub(crate) fn hash_image<I, B>(&self, ctxt: &HashCtxt, image: &I) -> B
where
I: Image,
B: BitSet,
{
let post_gauss = ctxt.gauss_preproc(image);
let HashCtxt { width, height, .. } = *ctxt;
if *self == Blockhash {
return match post_gauss {
Borrowed(img) => blockhash::blockhash(img, width, height),
Owned(img) => blockhash::blockhash(&img, width, height),
};
}
let grayscale = post_gauss.to_grayscale();
let (resize_width, resize_height) = self.resize_dimensions(width, height);
let hash_vals = ctxt.calc_hash_vals(&grayscale, resize_width, resize_height);
let rowstride = resize_width as usize;
match (*self, hash_vals) {
(Mean, Floats(ref floats)) => B::from_bools(mean_hash_f32(floats)),
(Mean, Bytes(ref bytes)) => B::from_bools(mean_hash_u8(bytes)),
(Gradient, Floats(ref floats)) => B::from_bools(gradient_hash(floats, rowstride)),
(Gradient, Bytes(ref bytes)) => B::from_bools(gradient_hash(bytes, rowstride)),
(VertGradient, Floats(ref floats)) => {
B::from_bools(vert_gradient_hash(floats, rowstride))
}
(VertGradient, Bytes(ref bytes)) => B::from_bools(vert_gradient_hash(bytes, rowstride)),
(DoubleGradient, Floats(ref floats)) => {
B::from_bools(double_gradient_hash(floats, rowstride))
}
(DoubleGradient, Bytes(ref bytes)) => {
B::from_bools(double_gradient_hash(bytes, rowstride))
}
(Blockhash, _) => unreachable!(),
}
}
pub(crate) fn round_hash_size(&self, width: u32, height: u32) -> (u32, u32) {
match *self {
DoubleGradient => (next_multiple_of_2(width), next_multiple_of_2(height)),
Blockhash => (next_multiple_of_4(width), next_multiple_of_4(height)),
_ => (width, height),
}
}
pub(crate) fn resize_dimensions(&self, width: u32, height: u32) -> (u32, u32) {
match *self {
Mean => (width, height),
Blockhash => panic!("Blockhash algorithm does not resize"),
Gradient => (width + 1, height),
VertGradient => (width, height + 1),
DoubleGradient => (width / 2 + 1, height / 2 + 1),
}
}
}
fn mean_hash_u8<'a>(luma: &'a [u8]) -> impl Iterator<Item = bool> + 'a {
let mean = (luma.iter().map(|&l| l as u32).sum::<u32>() / luma.len() as u32) as u8;
luma.iter().map(move |&x| x >= mean)
}
fn mean_hash_f32<'a>(luma: &'a [f32]) -> impl Iterator<Item = bool> + 'a {
let mean = luma.iter().sum::<f32>() / luma.len() as f32;
luma.iter().map(move |&x| x >= mean)
}
fn gradient_hash_impl<I>(luma: I) -> impl Iterator<Item = bool>
where
I: IntoIterator + Clone,
<I as IntoIterator>::Item: PartialOrd,
{
luma.clone()
.into_iter()
.skip(1)
.zip(luma)
.map(|(this, last)| last < this)
}
fn gradient_hash<'a, T: PartialOrd>(
luma: &'a [T],
rowstride: usize,
) -> impl Iterator<Item = bool> + 'a {
luma.chunks(rowstride).flat_map(gradient_hash_impl)
}
fn vert_gradient_hash<'a, T: PartialOrd>(
luma: &'a [T],
rowstride: usize,
) -> impl Iterator<Item = bool> + 'a {
(0..rowstride)
.map(move |col_start| luma[col_start..].iter().step_by(rowstride))
.flat_map(gradient_hash_impl)
}
fn double_gradient_hash<'a, T: PartialOrd>(
luma: &'a [T],
rowstride: usize,
) -> impl Iterator<Item = bool> + 'a {
gradient_hash(luma, rowstride).chain(vert_gradient_hash(luma, rowstride))
}