alloc/vec/
mod.rs

1//! A contiguous growable array type with heap-allocated contents, written
2//! `Vec<T>`.
3//!
4//! Vectors have *O*(1) indexing, amortized *O*(1) push (to the end) and
5//! *O*(1) pop (from the end).
6//!
7//! Vectors ensure they never allocate more than `isize::MAX` bytes.
8//!
9//! # Examples
10//!
11//! You can explicitly create a [`Vec`] with [`Vec::new`]:
12//!
13//! ```
14//! let v: Vec<i32> = Vec::new();
15//! ```
16//!
17//! ...or by using the [`vec!`] macro:
18//!
19//! ```
20//! let v: Vec<i32> = vec![];
21//!
22//! let v = vec![1, 2, 3, 4, 5];
23//!
24//! let v = vec![0; 10]; // ten zeroes
25//! ```
26//!
27//! You can [`push`] values onto the end of a vector (which will grow the vector
28//! as needed):
29//!
30//! ```
31//! let mut v = vec![1, 2];
32//!
33//! v.push(3);
34//! ```
35//!
36//! Popping values works in much the same way:
37//!
38//! ```
39//! let mut v = vec![1, 2];
40//!
41//! let two = v.pop();
42//! ```
43//!
44//! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits):
45//!
46//! ```
47//! let mut v = vec![1, 2, 3];
48//! let three = v[2];
49//! v[1] = v[1] + 5;
50//! ```
51//!
52//! [`push`]: Vec::push
53
54#![stable(feature = "rust1", since = "1.0.0")]
55
56#[cfg(not(no_global_oom_handling))]
57use core::cmp;
58use core::cmp::Ordering;
59use core::hash::{Hash, Hasher};
60#[cfg(not(no_global_oom_handling))]
61use core::iter;
62use core::marker::PhantomData;
63use core::mem::{self, ManuallyDrop, MaybeUninit, SizedTypeProperties};
64use core::ops::{self, Index, IndexMut, Range, RangeBounds};
65use core::ptr::{self, NonNull};
66use core::slice::{self, SliceIndex};
67use core::{fmt, intrinsics};
68
69#[stable(feature = "extract_if", since = "CURRENT_RUSTC_VERSION")]
70pub use self::extract_if::ExtractIf;
71use crate::alloc::{Allocator, Global};
72use crate::borrow::{Cow, ToOwned};
73use crate::boxed::Box;
74use crate::collections::TryReserveError;
75use crate::raw_vec::RawVec;
76
77mod extract_if;
78
79#[cfg(not(no_global_oom_handling))]
80#[stable(feature = "vec_splice", since = "1.21.0")]
81pub use self::splice::Splice;
82
83#[cfg(not(no_global_oom_handling))]
84mod splice;
85
86#[stable(feature = "drain", since = "1.6.0")]
87pub use self::drain::Drain;
88
89mod drain;
90
91#[cfg(not(no_global_oom_handling))]
92mod cow;
93
94#[cfg(not(no_global_oom_handling))]
95pub(crate) use self::in_place_collect::AsVecIntoIter;
96#[stable(feature = "rust1", since = "1.0.0")]
97pub use self::into_iter::IntoIter;
98
99mod into_iter;
100
101#[cfg(not(no_global_oom_handling))]
102use self::is_zero::IsZero;
103
104#[cfg(not(no_global_oom_handling))]
105mod is_zero;
106
107#[cfg(not(no_global_oom_handling))]
108mod in_place_collect;
109
110mod partial_eq;
111
112#[cfg(not(no_global_oom_handling))]
113use self::spec_from_elem::SpecFromElem;
114
115#[cfg(not(no_global_oom_handling))]
116mod spec_from_elem;
117
118#[cfg(not(no_global_oom_handling))]
119use self::set_len_on_drop::SetLenOnDrop;
120
121#[cfg(not(no_global_oom_handling))]
122mod set_len_on_drop;
123
124#[cfg(not(no_global_oom_handling))]
125use self::in_place_drop::{InPlaceDrop, InPlaceDstDataSrcBufDrop};
126
127#[cfg(not(no_global_oom_handling))]
128mod in_place_drop;
129
130#[cfg(not(no_global_oom_handling))]
131use self::spec_from_iter_nested::SpecFromIterNested;
132
133#[cfg(not(no_global_oom_handling))]
134mod spec_from_iter_nested;
135
136#[cfg(not(no_global_oom_handling))]
137use self::spec_from_iter::SpecFromIter;
138
139#[cfg(not(no_global_oom_handling))]
140mod spec_from_iter;
141
142#[cfg(not(no_global_oom_handling))]
143use self::spec_extend::SpecExtend;
144
145#[cfg(not(no_global_oom_handling))]
146mod spec_extend;
147
148/// A contiguous growable array type, written as `Vec<T>`, short for 'vector'.
149///
150/// # Examples
151///
152/// ```
153/// let mut vec = Vec::new();
154/// vec.push(1);
155/// vec.push(2);
156///
157/// assert_eq!(vec.len(), 2);
158/// assert_eq!(vec[0], 1);
159///
160/// assert_eq!(vec.pop(), Some(2));
161/// assert_eq!(vec.len(), 1);
162///
163/// vec[0] = 7;
164/// assert_eq!(vec[0], 7);
165///
166/// vec.extend([1, 2, 3]);
167///
168/// for x in &vec {
169///     println!("{x}");
170/// }
171/// assert_eq!(vec, [7, 1, 2, 3]);
172/// ```
173///
174/// The [`vec!`] macro is provided for convenient initialization:
175///
176/// ```
177/// let mut vec1 = vec![1, 2, 3];
178/// vec1.push(4);
179/// let vec2 = Vec::from([1, 2, 3, 4]);
180/// assert_eq!(vec1, vec2);
181/// ```
182///
183/// It can also initialize each element of a `Vec<T>` with a given value.
184/// This may be more efficient than performing allocation and initialization
185/// in separate steps, especially when initializing a vector of zeros:
186///
187/// ```
188/// let vec = vec![0; 5];
189/// assert_eq!(vec, [0, 0, 0, 0, 0]);
190///
191/// // The following is equivalent, but potentially slower:
192/// let mut vec = Vec::with_capacity(5);
193/// vec.resize(5, 0);
194/// assert_eq!(vec, [0, 0, 0, 0, 0]);
195/// ```
196///
197/// For more information, see
198/// [Capacity and Reallocation](#capacity-and-reallocation).
199///
200/// Use a `Vec<T>` as an efficient stack:
201///
202/// ```
203/// let mut stack = Vec::new();
204///
205/// stack.push(1);
206/// stack.push(2);
207/// stack.push(3);
208///
209/// while let Some(top) = stack.pop() {
210///     // Prints 3, 2, 1
211///     println!("{top}");
212/// }
213/// ```
214///
215/// # Indexing
216///
217/// The `Vec` type allows access to values by index, because it implements the
218/// [`Index`] trait. An example will be more explicit:
219///
220/// ```
221/// let v = vec![0, 2, 4, 6];
222/// println!("{}", v[1]); // it will display '2'
223/// ```
224///
225/// However be careful: if you try to access an index which isn't in the `Vec`,
226/// your software will panic! You cannot do this:
227///
228/// ```should_panic
229/// let v = vec![0, 2, 4, 6];
230/// println!("{}", v[6]); // it will panic!
231/// ```
232///
233/// Use [`get`] and [`get_mut`] if you want to check whether the index is in
234/// the `Vec`.
235///
236/// # Slicing
237///
238/// A `Vec` can be mutable. On the other hand, slices are read-only objects.
239/// To get a [slice][prim@slice], use [`&`]. Example:
240///
241/// ```
242/// fn read_slice(slice: &[usize]) {
243///     // ...
244/// }
245///
246/// let v = vec![0, 1];
247/// read_slice(&v);
248///
249/// // ... and that's all!
250/// // you can also do it like this:
251/// let u: &[usize] = &v;
252/// // or like this:
253/// let u: &[_] = &v;
254/// ```
255///
256/// In Rust, it's more common to pass slices as arguments rather than vectors
257/// when you just want to provide read access. The same goes for [`String`] and
258/// [`&str`].
259///
260/// # Capacity and reallocation
261///
262/// The capacity of a vector is the amount of space allocated for any future
263/// elements that will be added onto the vector. This is not to be confused with
264/// the *length* of a vector, which specifies the number of actual elements
265/// within the vector. If a vector's length exceeds its capacity, its capacity
266/// will automatically be increased, but its elements will have to be
267/// reallocated.
268///
269/// For example, a vector with capacity 10 and length 0 would be an empty vector
270/// with space for 10 more elements. Pushing 10 or fewer elements onto the
271/// vector will not change its capacity or cause reallocation to occur. However,
272/// if the vector's length is increased to 11, it will have to reallocate, which
273/// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`]
274/// whenever possible to specify how big the vector is expected to get.
275///
276/// # Guarantees
277///
278/// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees
279/// about its design. This ensures that it's as low-overhead as possible in
280/// the general case, and can be correctly manipulated in primitive ways
281/// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`.
282/// If additional type parameters are added (e.g., to support custom allocators),
283/// overriding their defaults may change the behavior.
284///
285/// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length)
286/// triplet. No more, no less. The order of these fields is completely
287/// unspecified, and you should use the appropriate methods to modify these.
288/// The pointer will never be null, so this type is null-pointer-optimized.
289///
290/// However, the pointer might not actually point to allocated memory. In particular,
291/// if you construct a `Vec` with capacity 0 via [`Vec::new`], [`vec![]`][`vec!`],
292/// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit`]
293/// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized
294/// types inside a `Vec`, it will not allocate space for them. *Note that in this case
295/// the `Vec` might not report a [`capacity`] of 0*. `Vec` will allocate if and only
296/// if <code>[size_of::\<T>]\() * [capacity]\() > 0</code>. In general, `Vec`'s allocation
297/// details are very subtle --- if you intend to allocate memory using a `Vec`
298/// and use it for something else (either to pass to unsafe code, or to build your
299/// own memory-backed collection), be sure to deallocate this memory by using
300/// `from_raw_parts` to recover the `Vec` and then dropping it.
301///
302/// If a `Vec` *has* allocated memory, then the memory it points to is on the heap
303/// (as defined by the allocator Rust is configured to use by default), and its
304/// pointer points to [`len`] initialized, contiguous elements in order (what
305/// you would see if you coerced it to a slice), followed by <code>[capacity] - [len]</code>
306/// logically uninitialized, contiguous elements.
307///
308/// A vector containing the elements `'a'` and `'b'` with capacity 4 can be
309/// visualized as below. The top part is the `Vec` struct, it contains a
310/// pointer to the head of the allocation in the heap, length and capacity.
311/// The bottom part is the allocation on the heap, a contiguous memory block.
312///
313/// ```text
314///             ptr      len  capacity
315///        +--------+--------+--------+
316///        | 0x0123 |      2 |      4 |
317///        +--------+--------+--------+
318///             |
319///             v
320/// Heap   +--------+--------+--------+--------+
321///        |    'a' |    'b' | uninit | uninit |
322///        +--------+--------+--------+--------+
323/// ```
324///
325/// - **uninit** represents memory that is not initialized, see [`MaybeUninit`].
326/// - Note: the ABI is not stable and `Vec` makes no guarantees about its memory
327///   layout (including the order of fields).
328///
329/// `Vec` will never perform a "small optimization" where elements are actually
330/// stored on the stack for two reasons:
331///
332/// * It would make it more difficult for unsafe code to correctly manipulate
333///   a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were
334///   only moved, and it would be more difficult to determine if a `Vec` had
335///   actually allocated memory.
336///
337/// * It would penalize the general case, incurring an additional branch
338///   on every access.
339///
340/// `Vec` will never automatically shrink itself, even if completely empty. This
341/// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec`
342/// and then filling it back up to the same [`len`] should incur no calls to
343/// the allocator. If you wish to free up unused memory, use
344/// [`shrink_to_fit`] or [`shrink_to`].
345///
346/// [`push`] and [`insert`] will never (re)allocate if the reported capacity is
347/// sufficient. [`push`] and [`insert`] *will* (re)allocate if
348/// <code>[len] == [capacity]</code>. That is, the reported capacity is completely
349/// accurate, and can be relied on. It can even be used to manually free the memory
350/// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even
351/// when not necessary.
352///
353/// `Vec` does not guarantee any particular growth strategy when reallocating
354/// when full, nor when [`reserve`] is called. The current strategy is basic
355/// and it may prove desirable to use a non-constant growth factor. Whatever
356/// strategy is used will of course guarantee *O*(1) amortized [`push`].
357///
358/// It is guaranteed, in order to respect the intentions of the programmer, that
359/// all of `vec![e_1, e_2, ..., e_n]`, `vec![x; n]`, and [`Vec::with_capacity(n)`] produce a `Vec`
360/// that requests an allocation of the exact size needed for precisely `n` elements from the allocator,
361/// and no other size (such as, for example: a size rounded up to the nearest power of 2).
362/// The allocator will return an allocation that is at least as large as requested, but it may be larger.
363///
364/// It is guaranteed that the [`Vec::capacity`] method returns a value that is at least the requested capacity
365/// and not more than the allocated capacity.
366///
367/// The method [`Vec::shrink_to_fit`] will attempt to discard excess capacity an allocator has given to a `Vec`.
368/// If <code>[len] == [capacity]</code>, then a `Vec<T>` can be converted
369/// to and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements.
370/// `Vec` exploits this fact as much as reasonable when implementing common conversions
371/// such as [`into_boxed_slice`].
372///
373/// `Vec` will not specifically overwrite any data that is removed from it,
374/// but also won't specifically preserve it. Its uninitialized memory is
375/// scratch space that it may use however it wants. It will generally just do
376/// whatever is most efficient or otherwise easy to implement. Do not rely on
377/// removed data to be erased for security purposes. Even if you drop a `Vec`, its
378/// buffer may simply be reused by another allocation. Even if you zero a `Vec`'s memory
379/// first, that might not actually happen because the optimizer does not consider
380/// this a side-effect that must be preserved. There is one case which we will
381/// not break, however: using `unsafe` code to write to the excess capacity,
382/// and then increasing the length to match, is always valid.
383///
384/// Currently, `Vec` does not guarantee the order in which elements are dropped.
385/// The order has changed in the past and may change again.
386///
387/// [`get`]: slice::get
388/// [`get_mut`]: slice::get_mut
389/// [`String`]: crate::string::String
390/// [`&str`]: type@str
391/// [`shrink_to_fit`]: Vec::shrink_to_fit
392/// [`shrink_to`]: Vec::shrink_to
393/// [capacity]: Vec::capacity
394/// [`capacity`]: Vec::capacity
395/// [`Vec::capacity`]: Vec::capacity
396/// [size_of::\<T>]: size_of
397/// [len]: Vec::len
398/// [`len`]: Vec::len
399/// [`push`]: Vec::push
400/// [`insert`]: Vec::insert
401/// [`reserve`]: Vec::reserve
402/// [`Vec::with_capacity(n)`]: Vec::with_capacity
403/// [`MaybeUninit`]: core::mem::MaybeUninit
404/// [owned slice]: Box
405/// [`into_boxed_slice`]: Vec::into_boxed_slice
406#[stable(feature = "rust1", since = "1.0.0")]
407#[rustc_diagnostic_item = "Vec"]
408#[rustc_insignificant_dtor]
409pub struct Vec<T, #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global> {
410    buf: RawVec<T, A>,
411    len: usize,
412}
413
414////////////////////////////////////////////////////////////////////////////////
415// Inherent methods
416////////////////////////////////////////////////////////////////////////////////
417
418impl<T> Vec<T> {
419    /// Constructs a new, empty `Vec<T>`.
420    ///
421    /// The vector will not allocate until elements are pushed onto it.
422    ///
423    /// # Examples
424    ///
425    /// ```
426    /// # #![allow(unused_mut)]
427    /// let mut vec: Vec<i32> = Vec::new();
428    /// ```
429    #[inline]
430    #[rustc_const_stable(feature = "const_vec_new", since = "1.39.0")]
431    #[rustc_diagnostic_item = "vec_new"]
432    #[stable(feature = "rust1", since = "1.0.0")]
433    #[must_use]
434    pub const fn new() -> Self {
435        Vec { buf: RawVec::new(), len: 0 }
436    }
437
438    /// Constructs a new, empty `Vec<T>` with at least the specified capacity.
439    ///
440    /// The vector will be able to hold at least `capacity` elements without
441    /// reallocating. This method is allowed to allocate for more elements than
442    /// `capacity`. If `capacity` is zero, the vector will not allocate.
443    ///
444    /// It is important to note that although the returned vector has the
445    /// minimum *capacity* specified, the vector will have a zero *length*. For
446    /// an explanation of the difference between length and capacity, see
447    /// *[Capacity and reallocation]*.
448    ///
449    /// If it is important to know the exact allocated capacity of a `Vec`,
450    /// always use the [`capacity`] method after construction.
451    ///
452    /// For `Vec<T>` where `T` is a zero-sized type, there will be no allocation
453    /// and the capacity will always be `usize::MAX`.
454    ///
455    /// [Capacity and reallocation]: #capacity-and-reallocation
456    /// [`capacity`]: Vec::capacity
457    ///
458    /// # Panics
459    ///
460    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
461    ///
462    /// # Examples
463    ///
464    /// ```
465    /// let mut vec = Vec::with_capacity(10);
466    ///
467    /// // The vector contains no items, even though it has capacity for more
468    /// assert_eq!(vec.len(), 0);
469    /// assert!(vec.capacity() >= 10);
470    ///
471    /// // These are all done without reallocating...
472    /// for i in 0..10 {
473    ///     vec.push(i);
474    /// }
475    /// assert_eq!(vec.len(), 10);
476    /// assert!(vec.capacity() >= 10);
477    ///
478    /// // ...but this may make the vector reallocate
479    /// vec.push(11);
480    /// assert_eq!(vec.len(), 11);
481    /// assert!(vec.capacity() >= 11);
482    ///
483    /// // A vector of a zero-sized type will always over-allocate, since no
484    /// // allocation is necessary
485    /// let vec_units = Vec::<()>::with_capacity(10);
486    /// assert_eq!(vec_units.capacity(), usize::MAX);
487    /// ```
488    #[cfg(not(no_global_oom_handling))]
489    #[inline]
490    #[stable(feature = "rust1", since = "1.0.0")]
491    #[must_use]
492    #[rustc_diagnostic_item = "vec_with_capacity"]
493    #[track_caller]
494    pub fn with_capacity(capacity: usize) -> Self {
495        Self::with_capacity_in(capacity, Global)
496    }
497
498    /// Constructs a new, empty `Vec<T>` with at least the specified capacity.
499    ///
500    /// The vector will be able to hold at least `capacity` elements without
501    /// reallocating. This method is allowed to allocate for more elements than
502    /// `capacity`. If `capacity` is zero, the vector will not allocate.
503    ///
504    /// # Errors
505    ///
506    /// Returns an error if the capacity exceeds `isize::MAX` _bytes_,
507    /// or if the allocator reports allocation failure.
508    #[inline]
509    #[unstable(feature = "try_with_capacity", issue = "91913")]
510    pub fn try_with_capacity(capacity: usize) -> Result<Self, TryReserveError> {
511        Self::try_with_capacity_in(capacity, Global)
512    }
513
514    /// Creates a `Vec<T>` directly from a pointer, a length, and a capacity.
515    ///
516    /// # Safety
517    ///
518    /// This is highly unsafe, due to the number of invariants that aren't
519    /// checked:
520    ///
521    /// * `ptr` must have been allocated using the global allocator, such as via
522    ///   the [`alloc::alloc`] function.
523    /// * `T` needs to have the same alignment as what `ptr` was allocated with.
524    ///   (`T` having a less strict alignment is not sufficient, the alignment really
525    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
526    ///   allocated and deallocated with the same layout.)
527    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
528    ///   to be the same size as the pointer was allocated with. (Because similar to
529    ///   alignment, [`dealloc`] must be called with the same layout `size`.)
530    /// * `length` needs to be less than or equal to `capacity`.
531    /// * The first `length` values must be properly initialized values of type `T`.
532    /// * `capacity` needs to be the capacity that the pointer was allocated with.
533    /// * The allocated size in bytes must be no larger than `isize::MAX`.
534    ///   See the safety documentation of [`pointer::offset`].
535    ///
536    /// These requirements are always upheld by any `ptr` that has been allocated
537    /// via `Vec<T>`. Other allocation sources are allowed if the invariants are
538    /// upheld.
539    ///
540    /// Violating these may cause problems like corrupting the allocator's
541    /// internal data structures. For example it is normally **not** safe
542    /// to build a `Vec<u8>` from a pointer to a C `char` array with length
543    /// `size_t`, doing so is only safe if the array was initially allocated by
544    /// a `Vec` or `String`.
545    /// It's also not safe to build one from a `Vec<u16>` and its length, because
546    /// the allocator cares about the alignment, and these two types have different
547    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
548    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
549    /// these issues, it is often preferable to do casting/transmuting using
550    /// [`slice::from_raw_parts`] instead.
551    ///
552    /// The ownership of `ptr` is effectively transferred to the
553    /// `Vec<T>` which may then deallocate, reallocate or change the
554    /// contents of memory pointed to by the pointer at will. Ensure
555    /// that nothing else uses the pointer after calling this
556    /// function.
557    ///
558    /// [`String`]: crate::string::String
559    /// [`alloc::alloc`]: crate::alloc::alloc
560    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
561    ///
562    /// # Examples
563    ///
564    /// ```
565    /// use std::ptr;
566    /// use std::mem;
567    ///
568    /// let v = vec![1, 2, 3];
569    ///
570    // FIXME Update this when vec_into_raw_parts is stabilized
571    /// // Prevent running `v`'s destructor so we are in complete control
572    /// // of the allocation.
573    /// let mut v = mem::ManuallyDrop::new(v);
574    ///
575    /// // Pull out the various important pieces of information about `v`
576    /// let p = v.as_mut_ptr();
577    /// let len = v.len();
578    /// let cap = v.capacity();
579    ///
580    /// unsafe {
581    ///     // Overwrite memory with 4, 5, 6
582    ///     for i in 0..len {
583    ///         ptr::write(p.add(i), 4 + i);
584    ///     }
585    ///
586    ///     // Put everything back together into a Vec
587    ///     let rebuilt = Vec::from_raw_parts(p, len, cap);
588    ///     assert_eq!(rebuilt, [4, 5, 6]);
589    /// }
590    /// ```
591    ///
592    /// Using memory that was allocated elsewhere:
593    ///
594    /// ```rust
595    /// use std::alloc::{alloc, Layout};
596    ///
597    /// fn main() {
598    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
599    ///
600    ///     let vec = unsafe {
601    ///         let mem = alloc(layout).cast::<u32>();
602    ///         if mem.is_null() {
603    ///             return;
604    ///         }
605    ///
606    ///         mem.write(1_000_000);
607    ///
608    ///         Vec::from_raw_parts(mem, 1, 16)
609    ///     };
610    ///
611    ///     assert_eq!(vec, &[1_000_000]);
612    ///     assert_eq!(vec.capacity(), 16);
613    /// }
614    /// ```
615    #[inline]
616    #[stable(feature = "rust1", since = "1.0.0")]
617    pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
618        unsafe { Self::from_raw_parts_in(ptr, length, capacity, Global) }
619    }
620
621    #[doc(alias = "from_non_null_parts")]
622    /// Creates a `Vec<T>` directly from a `NonNull` pointer, a length, and a capacity.
623    ///
624    /// # Safety
625    ///
626    /// This is highly unsafe, due to the number of invariants that aren't
627    /// checked:
628    ///
629    /// * `ptr` must have been allocated using the global allocator, such as via
630    ///   the [`alloc::alloc`] function.
631    /// * `T` needs to have the same alignment as what `ptr` was allocated with.
632    ///   (`T` having a less strict alignment is not sufficient, the alignment really
633    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
634    ///   allocated and deallocated with the same layout.)
635    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
636    ///   to be the same size as the pointer was allocated with. (Because similar to
637    ///   alignment, [`dealloc`] must be called with the same layout `size`.)
638    /// * `length` needs to be less than or equal to `capacity`.
639    /// * The first `length` values must be properly initialized values of type `T`.
640    /// * `capacity` needs to be the capacity that the pointer was allocated with.
641    /// * The allocated size in bytes must be no larger than `isize::MAX`.
642    ///   See the safety documentation of [`pointer::offset`].
643    ///
644    /// These requirements are always upheld by any `ptr` that has been allocated
645    /// via `Vec<T>`. Other allocation sources are allowed if the invariants are
646    /// upheld.
647    ///
648    /// Violating these may cause problems like corrupting the allocator's
649    /// internal data structures. For example it is normally **not** safe
650    /// to build a `Vec<u8>` from a pointer to a C `char` array with length
651    /// `size_t`, doing so is only safe if the array was initially allocated by
652    /// a `Vec` or `String`.
653    /// It's also not safe to build one from a `Vec<u16>` and its length, because
654    /// the allocator cares about the alignment, and these two types have different
655    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
656    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
657    /// these issues, it is often preferable to do casting/transmuting using
658    /// [`NonNull::slice_from_raw_parts`] instead.
659    ///
660    /// The ownership of `ptr` is effectively transferred to the
661    /// `Vec<T>` which may then deallocate, reallocate or change the
662    /// contents of memory pointed to by the pointer at will. Ensure
663    /// that nothing else uses the pointer after calling this
664    /// function.
665    ///
666    /// [`String`]: crate::string::String
667    /// [`alloc::alloc`]: crate::alloc::alloc
668    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
669    ///
670    /// # Examples
671    ///
672    /// ```
673    /// #![feature(box_vec_non_null)]
674    ///
675    /// use std::ptr::NonNull;
676    /// use std::mem;
677    ///
678    /// let v = vec![1, 2, 3];
679    ///
680    // FIXME Update this when vec_into_raw_parts is stabilized
681    /// // Prevent running `v`'s destructor so we are in complete control
682    /// // of the allocation.
683    /// let mut v = mem::ManuallyDrop::new(v);
684    ///
685    /// // Pull out the various important pieces of information about `v`
686    /// let p = unsafe { NonNull::new_unchecked(v.as_mut_ptr()) };
687    /// let len = v.len();
688    /// let cap = v.capacity();
689    ///
690    /// unsafe {
691    ///     // Overwrite memory with 4, 5, 6
692    ///     for i in 0..len {
693    ///         p.add(i).write(4 + i);
694    ///     }
695    ///
696    ///     // Put everything back together into a Vec
697    ///     let rebuilt = Vec::from_parts(p, len, cap);
698    ///     assert_eq!(rebuilt, [4, 5, 6]);
699    /// }
700    /// ```
701    ///
702    /// Using memory that was allocated elsewhere:
703    ///
704    /// ```rust
705    /// #![feature(box_vec_non_null)]
706    ///
707    /// use std::alloc::{alloc, Layout};
708    /// use std::ptr::NonNull;
709    ///
710    /// fn main() {
711    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
712    ///
713    ///     let vec = unsafe {
714    ///         let Some(mem) = NonNull::new(alloc(layout).cast::<u32>()) else {
715    ///             return;
716    ///         };
717    ///
718    ///         mem.write(1_000_000);
719    ///
720    ///         Vec::from_parts(mem, 1, 16)
721    ///     };
722    ///
723    ///     assert_eq!(vec, &[1_000_000]);
724    ///     assert_eq!(vec.capacity(), 16);
725    /// }
726    /// ```
727    #[inline]
728    #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
729    pub unsafe fn from_parts(ptr: NonNull<T>, length: usize, capacity: usize) -> Self {
730        unsafe { Self::from_parts_in(ptr, length, capacity, Global) }
731    }
732}
733
734impl<T, A: Allocator> Vec<T, A> {
735    /// Constructs a new, empty `Vec<T, A>`.
736    ///
737    /// The vector will not allocate until elements are pushed onto it.
738    ///
739    /// # Examples
740    ///
741    /// ```
742    /// #![feature(allocator_api)]
743    ///
744    /// use std::alloc::System;
745    ///
746    /// # #[allow(unused_mut)]
747    /// let mut vec: Vec<i32, _> = Vec::new_in(System);
748    /// ```
749    #[inline]
750    #[unstable(feature = "allocator_api", issue = "32838")]
751    pub const fn new_in(alloc: A) -> Self {
752        Vec { buf: RawVec::new_in(alloc), len: 0 }
753    }
754
755    /// Constructs a new, empty `Vec<T, A>` with at least the specified capacity
756    /// with the provided allocator.
757    ///
758    /// The vector will be able to hold at least `capacity` elements without
759    /// reallocating. This method is allowed to allocate for more elements than
760    /// `capacity`. If `capacity` is zero, the vector will not allocate.
761    ///
762    /// It is important to note that although the returned vector has the
763    /// minimum *capacity* specified, the vector will have a zero *length*. For
764    /// an explanation of the difference between length and capacity, see
765    /// *[Capacity and reallocation]*.
766    ///
767    /// If it is important to know the exact allocated capacity of a `Vec`,
768    /// always use the [`capacity`] method after construction.
769    ///
770    /// For `Vec<T, A>` where `T` is a zero-sized type, there will be no allocation
771    /// and the capacity will always be `usize::MAX`.
772    ///
773    /// [Capacity and reallocation]: #capacity-and-reallocation
774    /// [`capacity`]: Vec::capacity
775    ///
776    /// # Panics
777    ///
778    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
779    ///
780    /// # Examples
781    ///
782    /// ```
783    /// #![feature(allocator_api)]
784    ///
785    /// use std::alloc::System;
786    ///
787    /// let mut vec = Vec::with_capacity_in(10, System);
788    ///
789    /// // The vector contains no items, even though it has capacity for more
790    /// assert_eq!(vec.len(), 0);
791    /// assert!(vec.capacity() >= 10);
792    ///
793    /// // These are all done without reallocating...
794    /// for i in 0..10 {
795    ///     vec.push(i);
796    /// }
797    /// assert_eq!(vec.len(), 10);
798    /// assert!(vec.capacity() >= 10);
799    ///
800    /// // ...but this may make the vector reallocate
801    /// vec.push(11);
802    /// assert_eq!(vec.len(), 11);
803    /// assert!(vec.capacity() >= 11);
804    ///
805    /// // A vector of a zero-sized type will always over-allocate, since no
806    /// // allocation is necessary
807    /// let vec_units = Vec::<(), System>::with_capacity_in(10, System);
808    /// assert_eq!(vec_units.capacity(), usize::MAX);
809    /// ```
810    #[cfg(not(no_global_oom_handling))]
811    #[inline]
812    #[unstable(feature = "allocator_api", issue = "32838")]
813    #[track_caller]
814    pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
815        Vec { buf: RawVec::with_capacity_in(capacity, alloc), len: 0 }
816    }
817
818    /// Constructs a new, empty `Vec<T, A>` with at least the specified capacity
819    /// with the provided allocator.
820    ///
821    /// The vector will be able to hold at least `capacity` elements without
822    /// reallocating. This method is allowed to allocate for more elements than
823    /// `capacity`. If `capacity` is zero, the vector will not allocate.
824    ///
825    /// # Errors
826    ///
827    /// Returns an error if the capacity exceeds `isize::MAX` _bytes_,
828    /// or if the allocator reports allocation failure.
829    #[inline]
830    #[unstable(feature = "allocator_api", issue = "32838")]
831    // #[unstable(feature = "try_with_capacity", issue = "91913")]
832    pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> {
833        Ok(Vec { buf: RawVec::try_with_capacity_in(capacity, alloc)?, len: 0 })
834    }
835
836    /// Creates a `Vec<T, A>` directly from a pointer, a length, a capacity,
837    /// and an allocator.
838    ///
839    /// # Safety
840    ///
841    /// This is highly unsafe, due to the number of invariants that aren't
842    /// checked:
843    ///
844    /// * `ptr` must be [*currently allocated*] via the given allocator `alloc`.
845    /// * `T` needs to have the same alignment as what `ptr` was allocated with.
846    ///   (`T` having a less strict alignment is not sufficient, the alignment really
847    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
848    ///   allocated and deallocated with the same layout.)
849    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
850    ///   to be the same size as the pointer was allocated with. (Because similar to
851    ///   alignment, [`dealloc`] must be called with the same layout `size`.)
852    /// * `length` needs to be less than or equal to `capacity`.
853    /// * The first `length` values must be properly initialized values of type `T`.
854    /// * `capacity` needs to [*fit*] the layout size that the pointer was allocated with.
855    /// * The allocated size in bytes must be no larger than `isize::MAX`.
856    ///   See the safety documentation of [`pointer::offset`].
857    ///
858    /// These requirements are always upheld by any `ptr` that has been allocated
859    /// via `Vec<T, A>`. Other allocation sources are allowed if the invariants are
860    /// upheld.
861    ///
862    /// Violating these may cause problems like corrupting the allocator's
863    /// internal data structures. For example it is **not** safe
864    /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
865    /// It's also not safe to build one from a `Vec<u16>` and its length, because
866    /// the allocator cares about the alignment, and these two types have different
867    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
868    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
869    ///
870    /// The ownership of `ptr` is effectively transferred to the
871    /// `Vec<T>` which may then deallocate, reallocate or change the
872    /// contents of memory pointed to by the pointer at will. Ensure
873    /// that nothing else uses the pointer after calling this
874    /// function.
875    ///
876    /// [`String`]: crate::string::String
877    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
878    /// [*currently allocated*]: crate::alloc::Allocator#currently-allocated-memory
879    /// [*fit*]: crate::alloc::Allocator#memory-fitting
880    ///
881    /// # Examples
882    ///
883    /// ```
884    /// #![feature(allocator_api)]
885    ///
886    /// use std::alloc::System;
887    ///
888    /// use std::ptr;
889    /// use std::mem;
890    ///
891    /// let mut v = Vec::with_capacity_in(3, System);
892    /// v.push(1);
893    /// v.push(2);
894    /// v.push(3);
895    ///
896    // FIXME Update this when vec_into_raw_parts is stabilized
897    /// // Prevent running `v`'s destructor so we are in complete control
898    /// // of the allocation.
899    /// let mut v = mem::ManuallyDrop::new(v);
900    ///
901    /// // Pull out the various important pieces of information about `v`
902    /// let p = v.as_mut_ptr();
903    /// let len = v.len();
904    /// let cap = v.capacity();
905    /// let alloc = v.allocator();
906    ///
907    /// unsafe {
908    ///     // Overwrite memory with 4, 5, 6
909    ///     for i in 0..len {
910    ///         ptr::write(p.add(i), 4 + i);
911    ///     }
912    ///
913    ///     // Put everything back together into a Vec
914    ///     let rebuilt = Vec::from_raw_parts_in(p, len, cap, alloc.clone());
915    ///     assert_eq!(rebuilt, [4, 5, 6]);
916    /// }
917    /// ```
918    ///
919    /// Using memory that was allocated elsewhere:
920    ///
921    /// ```rust
922    /// #![feature(allocator_api)]
923    ///
924    /// use std::alloc::{AllocError, Allocator, Global, Layout};
925    ///
926    /// fn main() {
927    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
928    ///
929    ///     let vec = unsafe {
930    ///         let mem = match Global.allocate(layout) {
931    ///             Ok(mem) => mem.cast::<u32>().as_ptr(),
932    ///             Err(AllocError) => return,
933    ///         };
934    ///
935    ///         mem.write(1_000_000);
936    ///
937    ///         Vec::from_raw_parts_in(mem, 1, 16, Global)
938    ///     };
939    ///
940    ///     assert_eq!(vec, &[1_000_000]);
941    ///     assert_eq!(vec.capacity(), 16);
942    /// }
943    /// ```
944    #[inline]
945    #[unstable(feature = "allocator_api", issue = "32838")]
946    pub unsafe fn from_raw_parts_in(ptr: *mut T, length: usize, capacity: usize, alloc: A) -> Self {
947        unsafe { Vec { buf: RawVec::from_raw_parts_in(ptr, capacity, alloc), len: length } }
948    }
949
950    #[doc(alias = "from_non_null_parts_in")]
951    /// Creates a `Vec<T, A>` directly from a `NonNull` pointer, a length, a capacity,
952    /// and an allocator.
953    ///
954    /// # Safety
955    ///
956    /// This is highly unsafe, due to the number of invariants that aren't
957    /// checked:
958    ///
959    /// * `ptr` must be [*currently allocated*] via the given allocator `alloc`.
960    /// * `T` needs to have the same alignment as what `ptr` was allocated with.
961    ///   (`T` having a less strict alignment is not sufficient, the alignment really
962    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
963    ///   allocated and deallocated with the same layout.)
964    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
965    ///   to be the same size as the pointer was allocated with. (Because similar to
966    ///   alignment, [`dealloc`] must be called with the same layout `size`.)
967    /// * `length` needs to be less than or equal to `capacity`.
968    /// * The first `length` values must be properly initialized values of type `T`.
969    /// * `capacity` needs to [*fit*] the layout size that the pointer was allocated with.
970    /// * The allocated size in bytes must be no larger than `isize::MAX`.
971    ///   See the safety documentation of [`pointer::offset`].
972    ///
973    /// These requirements are always upheld by any `ptr` that has been allocated
974    /// via `Vec<T, A>`. Other allocation sources are allowed if the invariants are
975    /// upheld.
976    ///
977    /// Violating these may cause problems like corrupting the allocator's
978    /// internal data structures. For example it is **not** safe
979    /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
980    /// It's also not safe to build one from a `Vec<u16>` and its length, because
981    /// the allocator cares about the alignment, and these two types have different
982    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
983    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
984    ///
985    /// The ownership of `ptr` is effectively transferred to the
986    /// `Vec<T>` which may then deallocate, reallocate or change the
987    /// contents of memory pointed to by the pointer at will. Ensure
988    /// that nothing else uses the pointer after calling this
989    /// function.
990    ///
991    /// [`String`]: crate::string::String
992    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
993    /// [*currently allocated*]: crate::alloc::Allocator#currently-allocated-memory
994    /// [*fit*]: crate::alloc::Allocator#memory-fitting
995    ///
996    /// # Examples
997    ///
998    /// ```
999    /// #![feature(allocator_api, box_vec_non_null)]
1000    ///
1001    /// use std::alloc::System;
1002    ///
1003    /// use std::ptr::NonNull;
1004    /// use std::mem;
1005    ///
1006    /// let mut v = Vec::with_capacity_in(3, System);
1007    /// v.push(1);
1008    /// v.push(2);
1009    /// v.push(3);
1010    ///
1011    // FIXME Update this when vec_into_raw_parts is stabilized
1012    /// // Prevent running `v`'s destructor so we are in complete control
1013    /// // of the allocation.
1014    /// let mut v = mem::ManuallyDrop::new(v);
1015    ///
1016    /// // Pull out the various important pieces of information about `v`
1017    /// let p = unsafe { NonNull::new_unchecked(v.as_mut_ptr()) };
1018    /// let len = v.len();
1019    /// let cap = v.capacity();
1020    /// let alloc = v.allocator();
1021    ///
1022    /// unsafe {
1023    ///     // Overwrite memory with 4, 5, 6
1024    ///     for i in 0..len {
1025    ///         p.add(i).write(4 + i);
1026    ///     }
1027    ///
1028    ///     // Put everything back together into a Vec
1029    ///     let rebuilt = Vec::from_parts_in(p, len, cap, alloc.clone());
1030    ///     assert_eq!(rebuilt, [4, 5, 6]);
1031    /// }
1032    /// ```
1033    ///
1034    /// Using memory that was allocated elsewhere:
1035    ///
1036    /// ```rust
1037    /// #![feature(allocator_api, box_vec_non_null)]
1038    ///
1039    /// use std::alloc::{AllocError, Allocator, Global, Layout};
1040    ///
1041    /// fn main() {
1042    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
1043    ///
1044    ///     let vec = unsafe {
1045    ///         let mem = match Global.allocate(layout) {
1046    ///             Ok(mem) => mem.cast::<u32>(),
1047    ///             Err(AllocError) => return,
1048    ///         };
1049    ///
1050    ///         mem.write(1_000_000);
1051    ///
1052    ///         Vec::from_parts_in(mem, 1, 16, Global)
1053    ///     };
1054    ///
1055    ///     assert_eq!(vec, &[1_000_000]);
1056    ///     assert_eq!(vec.capacity(), 16);
1057    /// }
1058    /// ```
1059    #[inline]
1060    #[unstable(feature = "allocator_api", reason = "new API", issue = "32838")]
1061    // #[unstable(feature = "box_vec_non_null", issue = "130364")]
1062    pub unsafe fn from_parts_in(ptr: NonNull<T>, length: usize, capacity: usize, alloc: A) -> Self {
1063        unsafe { Vec { buf: RawVec::from_nonnull_in(ptr, capacity, alloc), len: length } }
1064    }
1065
1066    /// Decomposes a `Vec<T>` into its raw components: `(pointer, length, capacity)`.
1067    ///
1068    /// Returns the raw pointer to the underlying data, the length of
1069    /// the vector (in elements), and the allocated capacity of the
1070    /// data (in elements). These are the same arguments in the same
1071    /// order as the arguments to [`from_raw_parts`].
1072    ///
1073    /// After calling this function, the caller is responsible for the
1074    /// memory previously managed by the `Vec`. The only way to do
1075    /// this is to convert the raw pointer, length, and capacity back
1076    /// into a `Vec` with the [`from_raw_parts`] function, allowing
1077    /// the destructor to perform the cleanup.
1078    ///
1079    /// [`from_raw_parts`]: Vec::from_raw_parts
1080    ///
1081    /// # Examples
1082    ///
1083    /// ```
1084    /// #![feature(vec_into_raw_parts)]
1085    /// let v: Vec<i32> = vec![-1, 0, 1];
1086    ///
1087    /// let (ptr, len, cap) = v.into_raw_parts();
1088    ///
1089    /// let rebuilt = unsafe {
1090    ///     // We can now make changes to the components, such as
1091    ///     // transmuting the raw pointer to a compatible type.
1092    ///     let ptr = ptr as *mut u32;
1093    ///
1094    ///     Vec::from_raw_parts(ptr, len, cap)
1095    /// };
1096    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
1097    /// ```
1098    #[must_use = "losing the pointer will leak memory"]
1099    #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
1100    pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
1101        let mut me = ManuallyDrop::new(self);
1102        (me.as_mut_ptr(), me.len(), me.capacity())
1103    }
1104
1105    #[doc(alias = "into_non_null_parts")]
1106    /// Decomposes a `Vec<T>` into its raw components: `(NonNull pointer, length, capacity)`.
1107    ///
1108    /// Returns the `NonNull` pointer to the underlying data, the length of
1109    /// the vector (in elements), and the allocated capacity of the
1110    /// data (in elements). These are the same arguments in the same
1111    /// order as the arguments to [`from_parts`].
1112    ///
1113    /// After calling this function, the caller is responsible for the
1114    /// memory previously managed by the `Vec`. The only way to do
1115    /// this is to convert the `NonNull` pointer, length, and capacity back
1116    /// into a `Vec` with the [`from_parts`] function, allowing
1117    /// the destructor to perform the cleanup.
1118    ///
1119    /// [`from_parts`]: Vec::from_parts
1120    ///
1121    /// # Examples
1122    ///
1123    /// ```
1124    /// #![feature(vec_into_raw_parts, box_vec_non_null)]
1125    ///
1126    /// let v: Vec<i32> = vec![-1, 0, 1];
1127    ///
1128    /// let (ptr, len, cap) = v.into_parts();
1129    ///
1130    /// let rebuilt = unsafe {
1131    ///     // We can now make changes to the components, such as
1132    ///     // transmuting the raw pointer to a compatible type.
1133    ///     let ptr = ptr.cast::<u32>();
1134    ///
1135    ///     Vec::from_parts(ptr, len, cap)
1136    /// };
1137    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
1138    /// ```
1139    #[must_use = "losing the pointer will leak memory"]
1140    #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1141    // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
1142    pub fn into_parts(self) -> (NonNull<T>, usize, usize) {
1143        let (ptr, len, capacity) = self.into_raw_parts();
1144        // SAFETY: A `Vec` always has a non-null pointer.
1145        (unsafe { NonNull::new_unchecked(ptr) }, len, capacity)
1146    }
1147
1148    /// Decomposes a `Vec<T>` into its raw components: `(pointer, length, capacity, allocator)`.
1149    ///
1150    /// Returns the raw pointer to the underlying data, the length of the vector (in elements),
1151    /// the allocated capacity of the data (in elements), and the allocator. These are the same
1152    /// arguments in the same order as the arguments to [`from_raw_parts_in`].
1153    ///
1154    /// After calling this function, the caller is responsible for the
1155    /// memory previously managed by the `Vec`. The only way to do
1156    /// this is to convert the raw pointer, length, and capacity back
1157    /// into a `Vec` with the [`from_raw_parts_in`] function, allowing
1158    /// the destructor to perform the cleanup.
1159    ///
1160    /// [`from_raw_parts_in`]: Vec::from_raw_parts_in
1161    ///
1162    /// # Examples
1163    ///
1164    /// ```
1165    /// #![feature(allocator_api, vec_into_raw_parts)]
1166    ///
1167    /// use std::alloc::System;
1168    ///
1169    /// let mut v: Vec<i32, System> = Vec::new_in(System);
1170    /// v.push(-1);
1171    /// v.push(0);
1172    /// v.push(1);
1173    ///
1174    /// let (ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();
1175    ///
1176    /// let rebuilt = unsafe {
1177    ///     // We can now make changes to the components, such as
1178    ///     // transmuting the raw pointer to a compatible type.
1179    ///     let ptr = ptr as *mut u32;
1180    ///
1181    ///     Vec::from_raw_parts_in(ptr, len, cap, alloc)
1182    /// };
1183    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
1184    /// ```
1185    #[must_use = "losing the pointer will leak memory"]
1186    #[unstable(feature = "allocator_api", issue = "32838")]
1187    // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
1188    pub fn into_raw_parts_with_alloc(self) -> (*mut T, usize, usize, A) {
1189        let mut me = ManuallyDrop::new(self);
1190        let len = me.len();
1191        let capacity = me.capacity();
1192        let ptr = me.as_mut_ptr();
1193        let alloc = unsafe { ptr::read(me.allocator()) };
1194        (ptr, len, capacity, alloc)
1195    }
1196
1197    #[doc(alias = "into_non_null_parts_with_alloc")]
1198    /// Decomposes a `Vec<T>` into its raw components: `(NonNull pointer, length, capacity, allocator)`.
1199    ///
1200    /// Returns the `NonNull` pointer to the underlying data, the length of the vector (in elements),
1201    /// the allocated capacity of the data (in elements), and the allocator. These are the same
1202    /// arguments in the same order as the arguments to [`from_parts_in`].
1203    ///
1204    /// After calling this function, the caller is responsible for the
1205    /// memory previously managed by the `Vec`. The only way to do
1206    /// this is to convert the `NonNull` pointer, length, and capacity back
1207    /// into a `Vec` with the [`from_parts_in`] function, allowing
1208    /// the destructor to perform the cleanup.
1209    ///
1210    /// [`from_parts_in`]: Vec::from_parts_in
1211    ///
1212    /// # Examples
1213    ///
1214    /// ```
1215    /// #![feature(allocator_api, vec_into_raw_parts, box_vec_non_null)]
1216    ///
1217    /// use std::alloc::System;
1218    ///
1219    /// let mut v: Vec<i32, System> = Vec::new_in(System);
1220    /// v.push(-1);
1221    /// v.push(0);
1222    /// v.push(1);
1223    ///
1224    /// let (ptr, len, cap, alloc) = v.into_parts_with_alloc();
1225    ///
1226    /// let rebuilt = unsafe {
1227    ///     // We can now make changes to the components, such as
1228    ///     // transmuting the raw pointer to a compatible type.
1229    ///     let ptr = ptr.cast::<u32>();
1230    ///
1231    ///     Vec::from_parts_in(ptr, len, cap, alloc)
1232    /// };
1233    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
1234    /// ```
1235    #[must_use = "losing the pointer will leak memory"]
1236    #[unstable(feature = "allocator_api", issue = "32838")]
1237    // #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1238    // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
1239    pub fn into_parts_with_alloc(self) -> (NonNull<T>, usize, usize, A) {
1240        let (ptr, len, capacity, alloc) = self.into_raw_parts_with_alloc();
1241        // SAFETY: A `Vec` always has a non-null pointer.
1242        (unsafe { NonNull::new_unchecked(ptr) }, len, capacity, alloc)
1243    }
1244
1245    /// Returns the total number of elements the vector can hold without
1246    /// reallocating.
1247    ///
1248    /// # Examples
1249    ///
1250    /// ```
1251    /// let mut vec: Vec<i32> = Vec::with_capacity(10);
1252    /// vec.push(42);
1253    /// assert!(vec.capacity() >= 10);
1254    /// ```
1255    ///
1256    /// A vector with zero-sized elements will always have a capacity of usize::MAX:
1257    ///
1258    /// ```
1259    /// #[derive(Clone)]
1260    /// struct ZeroSized;
1261    ///
1262    /// fn main() {
1263    ///     assert_eq!(std::mem::size_of::<ZeroSized>(), 0);
1264    ///     let v = vec![ZeroSized; 0];
1265    ///     assert_eq!(v.capacity(), usize::MAX);
1266    /// }
1267    /// ```
1268    #[inline]
1269    #[stable(feature = "rust1", since = "1.0.0")]
1270    #[rustc_const_stable(feature = "const_vec_string_slice", since = "CURRENT_RUSTC_VERSION")]
1271    pub const fn capacity(&self) -> usize {
1272        self.buf.capacity()
1273    }
1274
1275    /// Reserves capacity for at least `additional` more elements to be inserted
1276    /// in the given `Vec<T>`. The collection may reserve more space to
1277    /// speculatively avoid frequent reallocations. After calling `reserve`,
1278    /// capacity will be greater than or equal to `self.len() + additional`.
1279    /// Does nothing if capacity is already sufficient.
1280    ///
1281    /// # Panics
1282    ///
1283    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
1284    ///
1285    /// # Examples
1286    ///
1287    /// ```
1288    /// let mut vec = vec![1];
1289    /// vec.reserve(10);
1290    /// assert!(vec.capacity() >= 11);
1291    /// ```
1292    #[cfg(not(no_global_oom_handling))]
1293    #[stable(feature = "rust1", since = "1.0.0")]
1294    #[track_caller]
1295    #[rustc_diagnostic_item = "vec_reserve"]
1296    pub fn reserve(&mut self, additional: usize) {
1297        self.buf.reserve(self.len, additional);
1298    }
1299
1300    /// Reserves the minimum capacity for at least `additional` more elements to
1301    /// be inserted in the given `Vec<T>`. Unlike [`reserve`], this will not
1302    /// deliberately over-allocate to speculatively avoid frequent allocations.
1303    /// After calling `reserve_exact`, capacity will be greater than or equal to
1304    /// `self.len() + additional`. Does nothing if the capacity is already
1305    /// sufficient.
1306    ///
1307    /// Note that the allocator may give the collection more space than it
1308    /// requests. Therefore, capacity can not be relied upon to be precisely
1309    /// minimal. Prefer [`reserve`] if future insertions are expected.
1310    ///
1311    /// [`reserve`]: Vec::reserve
1312    ///
1313    /// # Panics
1314    ///
1315    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
1316    ///
1317    /// # Examples
1318    ///
1319    /// ```
1320    /// let mut vec = vec![1];
1321    /// vec.reserve_exact(10);
1322    /// assert!(vec.capacity() >= 11);
1323    /// ```
1324    #[cfg(not(no_global_oom_handling))]
1325    #[stable(feature = "rust1", since = "1.0.0")]
1326    #[track_caller]
1327    pub fn reserve_exact(&mut self, additional: usize) {
1328        self.buf.reserve_exact(self.len, additional);
1329    }
1330
1331    /// Tries to reserve capacity for at least `additional` more elements to be inserted
1332    /// in the given `Vec<T>`. The collection may reserve more space to speculatively avoid
1333    /// frequent reallocations. After calling `try_reserve`, capacity will be
1334    /// greater than or equal to `self.len() + additional` if it returns
1335    /// `Ok(())`. Does nothing if capacity is already sufficient. This method
1336    /// preserves the contents even if an error occurs.
1337    ///
1338    /// # Errors
1339    ///
1340    /// If the capacity overflows, or the allocator reports a failure, then an error
1341    /// is returned.
1342    ///
1343    /// # Examples
1344    ///
1345    /// ```
1346    /// use std::collections::TryReserveError;
1347    ///
1348    /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
1349    ///     let mut output = Vec::new();
1350    ///
1351    ///     // Pre-reserve the memory, exiting if we can't
1352    ///     output.try_reserve(data.len())?;
1353    ///
1354    ///     // Now we know this can't OOM in the middle of our complex work
1355    ///     output.extend(data.iter().map(|&val| {
1356    ///         val * 2 + 5 // very complicated
1357    ///     }));
1358    ///
1359    ///     Ok(output)
1360    /// }
1361    /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1362    /// ```
1363    #[stable(feature = "try_reserve", since = "1.57.0")]
1364    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
1365        self.buf.try_reserve(self.len, additional)
1366    }
1367
1368    /// Tries to reserve the minimum capacity for at least `additional`
1369    /// elements to be inserted in the given `Vec<T>`. Unlike [`try_reserve`],
1370    /// this will not deliberately over-allocate to speculatively avoid frequent
1371    /// allocations. After calling `try_reserve_exact`, capacity will be greater
1372    /// than or equal to `self.len() + additional` if it returns `Ok(())`.
1373    /// Does nothing if the capacity is already sufficient.
1374    ///
1375    /// Note that the allocator may give the collection more space than it
1376    /// requests. Therefore, capacity can not be relied upon to be precisely
1377    /// minimal. Prefer [`try_reserve`] if future insertions are expected.
1378    ///
1379    /// [`try_reserve`]: Vec::try_reserve
1380    ///
1381    /// # Errors
1382    ///
1383    /// If the capacity overflows, or the allocator reports a failure, then an error
1384    /// is returned.
1385    ///
1386    /// # Examples
1387    ///
1388    /// ```
1389    /// use std::collections::TryReserveError;
1390    ///
1391    /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
1392    ///     let mut output = Vec::new();
1393    ///
1394    ///     // Pre-reserve the memory, exiting if we can't
1395    ///     output.try_reserve_exact(data.len())?;
1396    ///
1397    ///     // Now we know this can't OOM in the middle of our complex work
1398    ///     output.extend(data.iter().map(|&val| {
1399    ///         val * 2 + 5 // very complicated
1400    ///     }));
1401    ///
1402    ///     Ok(output)
1403    /// }
1404    /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1405    /// ```
1406    #[stable(feature = "try_reserve", since = "1.57.0")]
1407    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
1408        self.buf.try_reserve_exact(self.len, additional)
1409    }
1410
1411    /// Shrinks the capacity of the vector as much as possible.
1412    ///
1413    /// The behavior of this method depends on the allocator, which may either shrink the vector
1414    /// in-place or reallocate. The resulting vector might still have some excess capacity, just as
1415    /// is the case for [`with_capacity`]. See [`Allocator::shrink`] for more details.
1416    ///
1417    /// [`with_capacity`]: Vec::with_capacity
1418    ///
1419    /// # Examples
1420    ///
1421    /// ```
1422    /// let mut vec = Vec::with_capacity(10);
1423    /// vec.extend([1, 2, 3]);
1424    /// assert!(vec.capacity() >= 10);
1425    /// vec.shrink_to_fit();
1426    /// assert!(vec.capacity() >= 3);
1427    /// ```
1428    #[cfg(not(no_global_oom_handling))]
1429    #[stable(feature = "rust1", since = "1.0.0")]
1430    #[track_caller]
1431    #[inline]
1432    pub fn shrink_to_fit(&mut self) {
1433        // The capacity is never less than the length, and there's nothing to do when
1434        // they are equal, so we can avoid the panic case in `RawVec::shrink_to_fit`
1435        // by only calling it with a greater capacity.
1436        if self.capacity() > self.len {
1437            self.buf.shrink_to_fit(self.len);
1438        }
1439    }
1440
1441    /// Shrinks the capacity of the vector with a lower bound.
1442    ///
1443    /// The capacity will remain at least as large as both the length
1444    /// and the supplied value.
1445    ///
1446    /// If the current capacity is less than the lower limit, this is a no-op.
1447    ///
1448    /// # Examples
1449    ///
1450    /// ```
1451    /// let mut vec = Vec::with_capacity(10);
1452    /// vec.extend([1, 2, 3]);
1453    /// assert!(vec.capacity() >= 10);
1454    /// vec.shrink_to(4);
1455    /// assert!(vec.capacity() >= 4);
1456    /// vec.shrink_to(0);
1457    /// assert!(vec.capacity() >= 3);
1458    /// ```
1459    #[cfg(not(no_global_oom_handling))]
1460    #[stable(feature = "shrink_to", since = "1.56.0")]
1461    #[track_caller]
1462    pub fn shrink_to(&mut self, min_capacity: usize) {
1463        if self.capacity() > min_capacity {
1464            self.buf.shrink_to_fit(cmp::max(self.len, min_capacity));
1465        }
1466    }
1467
1468    /// Converts the vector into [`Box<[T]>`][owned slice].
1469    ///
1470    /// Before doing the conversion, this method discards excess capacity like [`shrink_to_fit`].
1471    ///
1472    /// [owned slice]: Box
1473    /// [`shrink_to_fit`]: Vec::shrink_to_fit
1474    ///
1475    /// # Examples
1476    ///
1477    /// ```
1478    /// let v = vec![1, 2, 3];
1479    ///
1480    /// let slice = v.into_boxed_slice();
1481    /// ```
1482    ///
1483    /// Any excess capacity is removed:
1484    ///
1485    /// ```
1486    /// let mut vec = Vec::with_capacity(10);
1487    /// vec.extend([1, 2, 3]);
1488    ///
1489    /// assert!(vec.capacity() >= 10);
1490    /// let slice = vec.into_boxed_slice();
1491    /// assert_eq!(slice.into_vec().capacity(), 3);
1492    /// ```
1493    #[cfg(not(no_global_oom_handling))]
1494    #[stable(feature = "rust1", since = "1.0.0")]
1495    #[track_caller]
1496    pub fn into_boxed_slice(mut self) -> Box<[T], A> {
1497        unsafe {
1498            self.shrink_to_fit();
1499            let me = ManuallyDrop::new(self);
1500            let buf = ptr::read(&me.buf);
1501            let len = me.len();
1502            buf.into_box(len).assume_init()
1503        }
1504    }
1505
1506    /// Shortens the vector, keeping the first `len` elements and dropping
1507    /// the rest.
1508    ///
1509    /// If `len` is greater or equal to the vector's current length, this has
1510    /// no effect.
1511    ///
1512    /// The [`drain`] method can emulate `truncate`, but causes the excess
1513    /// elements to be returned instead of dropped.
1514    ///
1515    /// Note that this method has no effect on the allocated capacity
1516    /// of the vector.
1517    ///
1518    /// # Examples
1519    ///
1520    /// Truncating a five element vector to two elements:
1521    ///
1522    /// ```
1523    /// let mut vec = vec![1, 2, 3, 4, 5];
1524    /// vec.truncate(2);
1525    /// assert_eq!(vec, [1, 2]);
1526    /// ```
1527    ///
1528    /// No truncation occurs when `len` is greater than the vector's current
1529    /// length:
1530    ///
1531    /// ```
1532    /// let mut vec = vec![1, 2, 3];
1533    /// vec.truncate(8);
1534    /// assert_eq!(vec, [1, 2, 3]);
1535    /// ```
1536    ///
1537    /// Truncating when `len == 0` is equivalent to calling the [`clear`]
1538    /// method.
1539    ///
1540    /// ```
1541    /// let mut vec = vec![1, 2, 3];
1542    /// vec.truncate(0);
1543    /// assert_eq!(vec, []);
1544    /// ```
1545    ///
1546    /// [`clear`]: Vec::clear
1547    /// [`drain`]: Vec::drain
1548    #[stable(feature = "rust1", since = "1.0.0")]
1549    pub fn truncate(&mut self, len: usize) {
1550        // This is safe because:
1551        //
1552        // * the slice passed to `drop_in_place` is valid; the `len > self.len`
1553        //   case avoids creating an invalid slice, and
1554        // * the `len` of the vector is shrunk before calling `drop_in_place`,
1555        //   such that no value will be dropped twice in case `drop_in_place`
1556        //   were to panic once (if it panics twice, the program aborts).
1557        unsafe {
1558            // Note: It's intentional that this is `>` and not `>=`.
1559            //       Changing it to `>=` has negative performance
1560            //       implications in some cases. See #78884 for more.
1561            if len > self.len {
1562                return;
1563            }
1564            let remaining_len = self.len - len;
1565            let s = ptr::slice_from_raw_parts_mut(self.as_mut_ptr().add(len), remaining_len);
1566            self.len = len;
1567            ptr::drop_in_place(s);
1568        }
1569    }
1570
1571    /// Extracts a slice containing the entire vector.
1572    ///
1573    /// Equivalent to `&s[..]`.
1574    ///
1575    /// # Examples
1576    ///
1577    /// ```
1578    /// use std::io::{self, Write};
1579    /// let buffer = vec![1, 2, 3, 5, 8];
1580    /// io::sink().write(buffer.as_slice()).unwrap();
1581    /// ```
1582    #[inline]
1583    #[stable(feature = "vec_as_slice", since = "1.7.0")]
1584    #[rustc_diagnostic_item = "vec_as_slice"]
1585    #[rustc_const_stable(feature = "const_vec_string_slice", since = "CURRENT_RUSTC_VERSION")]
1586    pub const fn as_slice(&self) -> &[T] {
1587        // SAFETY: `slice::from_raw_parts` requires pointee is a contiguous, aligned buffer of size
1588        // `len` containing properly-initialized `T`s. Data must not be mutated for the returned
1589        // lifetime. Further, `len * size_of::<T>` <= `isize::MAX`, and allocation does not
1590        // "wrap" through overflowing memory addresses.
1591        //
1592        // * Vec API guarantees that self.buf:
1593        //      * contains only properly-initialized items within 0..len
1594        //      * is aligned, contiguous, and valid for `len` reads
1595        //      * obeys size and address-wrapping constraints
1596        //
1597        // * We only construct `&mut` references to `self.buf` through `&mut self` methods; borrow-
1598        //   check ensures that it is not possible to mutably alias `self.buf` within the
1599        //   returned lifetime.
1600        unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
1601    }
1602
1603    /// Extracts a mutable slice of the entire vector.
1604    ///
1605    /// Equivalent to `&mut s[..]`.
1606    ///
1607    /// # Examples
1608    ///
1609    /// ```
1610    /// use std::io::{self, Read};
1611    /// let mut buffer = vec![0; 3];
1612    /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
1613    /// ```
1614    #[inline]
1615    #[stable(feature = "vec_as_slice", since = "1.7.0")]
1616    #[rustc_diagnostic_item = "vec_as_mut_slice"]
1617    #[rustc_const_stable(feature = "const_vec_string_slice", since = "CURRENT_RUSTC_VERSION")]
1618    pub const fn as_mut_slice(&mut self) -> &mut [T] {
1619        // SAFETY: `slice::from_raw_parts_mut` requires pointee is a contiguous, aligned buffer of
1620        // size `len` containing properly-initialized `T`s. Data must not be accessed through any
1621        // other pointer for the returned lifetime. Further, `len * size_of::<T>` <=
1622        // `ISIZE::MAX` and allocation does not "wrap" through overflowing memory addresses.
1623        //
1624        // * Vec API guarantees that self.buf:
1625        //      * contains only properly-initialized items within 0..len
1626        //      * is aligned, contiguous, and valid for `len` reads
1627        //      * obeys size and address-wrapping constraints
1628        //
1629        // * We only construct references to `self.buf` through `&self` and `&mut self` methods;
1630        //   borrow-check ensures that it is not possible to construct a reference to `self.buf`
1631        //   within the returned lifetime.
1632        unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
1633    }
1634
1635    /// Returns a raw pointer to the vector's buffer, or a dangling raw pointer
1636    /// valid for zero sized reads if the vector didn't allocate.
1637    ///
1638    /// The caller must ensure that the vector outlives the pointer this
1639    /// function returns, or else it will end up dangling.
1640    /// Modifying the vector may cause its buffer to be reallocated,
1641    /// which would also make any pointers to it invalid.
1642    ///
1643    /// The caller must also ensure that the memory the pointer (non-transitively) points to
1644    /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
1645    /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
1646    ///
1647    /// This method guarantees that for the purpose of the aliasing model, this method
1648    /// does not materialize a reference to the underlying slice, and thus the returned pointer
1649    /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1650    /// and [`as_non_null`].
1651    /// Note that calling other methods that materialize mutable references to the slice,
1652    /// or mutable references to specific elements you are planning on accessing through this pointer,
1653    /// as well as writing to those elements, may still invalidate this pointer.
1654    /// See the second example below for how this guarantee can be used.
1655    ///
1656    ///
1657    /// # Examples
1658    ///
1659    /// ```
1660    /// let x = vec![1, 2, 4];
1661    /// let x_ptr = x.as_ptr();
1662    ///
1663    /// unsafe {
1664    ///     for i in 0..x.len() {
1665    ///         assert_eq!(*x_ptr.add(i), 1 << i);
1666    ///     }
1667    /// }
1668    /// ```
1669    ///
1670    /// Due to the aliasing guarantee, the following code is legal:
1671    ///
1672    /// ```rust
1673    /// unsafe {
1674    ///     let mut v = vec![0, 1, 2];
1675    ///     let ptr1 = v.as_ptr();
1676    ///     let _ = ptr1.read();
1677    ///     let ptr2 = v.as_mut_ptr().offset(2);
1678    ///     ptr2.write(2);
1679    ///     // Notably, the write to `ptr2` did *not* invalidate `ptr1`
1680    ///     // because it mutated a different element:
1681    ///     let _ = ptr1.read();
1682    /// }
1683    /// ```
1684    ///
1685    /// [`as_mut_ptr`]: Vec::as_mut_ptr
1686    /// [`as_ptr`]: Vec::as_ptr
1687    /// [`as_non_null`]: Vec::as_non_null
1688    #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1689    #[rustc_const_stable(feature = "const_vec_string_slice", since = "CURRENT_RUSTC_VERSION")]
1690    #[rustc_never_returns_null_ptr]
1691    #[rustc_as_ptr]
1692    #[inline]
1693    pub const fn as_ptr(&self) -> *const T {
1694        // We shadow the slice method of the same name to avoid going through
1695        // `deref`, which creates an intermediate reference.
1696        self.buf.ptr()
1697    }
1698
1699    /// Returns a raw mutable pointer to the vector's buffer, or a dangling
1700    /// raw pointer valid for zero sized reads if the vector didn't allocate.
1701    ///
1702    /// The caller must ensure that the vector outlives the pointer this
1703    /// function returns, or else it will end up dangling.
1704    /// Modifying the vector may cause its buffer to be reallocated,
1705    /// which would also make any pointers to it invalid.
1706    ///
1707    /// This method guarantees that for the purpose of the aliasing model, this method
1708    /// does not materialize a reference to the underlying slice, and thus the returned pointer
1709    /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1710    /// and [`as_non_null`].
1711    /// Note that calling other methods that materialize references to the slice,
1712    /// or references to specific elements you are planning on accessing through this pointer,
1713    /// may still invalidate this pointer.
1714    /// See the second example below for how this guarantee can be used.
1715    ///
1716    /// # Examples
1717    ///
1718    /// ```
1719    /// // Allocate vector big enough for 4 elements.
1720    /// let size = 4;
1721    /// let mut x: Vec<i32> = Vec::with_capacity(size);
1722    /// let x_ptr = x.as_mut_ptr();
1723    ///
1724    /// // Initialize elements via raw pointer writes, then set length.
1725    /// unsafe {
1726    ///     for i in 0..size {
1727    ///         *x_ptr.add(i) = i as i32;
1728    ///     }
1729    ///     x.set_len(size);
1730    /// }
1731    /// assert_eq!(&*x, &[0, 1, 2, 3]);
1732    /// ```
1733    ///
1734    /// Due to the aliasing guarantee, the following code is legal:
1735    ///
1736    /// ```rust
1737    /// unsafe {
1738    ///     let mut v = vec![0];
1739    ///     let ptr1 = v.as_mut_ptr();
1740    ///     ptr1.write(1);
1741    ///     let ptr2 = v.as_mut_ptr();
1742    ///     ptr2.write(2);
1743    ///     // Notably, the write to `ptr2` did *not* invalidate `ptr1`:
1744    ///     ptr1.write(3);
1745    /// }
1746    /// ```
1747    ///
1748    /// [`as_mut_ptr`]: Vec::as_mut_ptr
1749    /// [`as_ptr`]: Vec::as_ptr
1750    /// [`as_non_null`]: Vec::as_non_null
1751    #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1752    #[rustc_const_stable(feature = "const_vec_string_slice", since = "CURRENT_RUSTC_VERSION")]
1753    #[rustc_never_returns_null_ptr]
1754    #[rustc_as_ptr]
1755    #[inline]
1756    pub const fn as_mut_ptr(&mut self) -> *mut T {
1757        // We shadow the slice method of the same name to avoid going through
1758        // `deref_mut`, which creates an intermediate reference.
1759        self.buf.ptr()
1760    }
1761
1762    /// Returns a `NonNull` pointer to the vector's buffer, or a dangling
1763    /// `NonNull` pointer valid for zero sized reads if the vector didn't allocate.
1764    ///
1765    /// The caller must ensure that the vector outlives the pointer this
1766    /// function returns, or else it will end up dangling.
1767    /// Modifying the vector may cause its buffer to be reallocated,
1768    /// which would also make any pointers to it invalid.
1769    ///
1770    /// This method guarantees that for the purpose of the aliasing model, this method
1771    /// does not materialize a reference to the underlying slice, and thus the returned pointer
1772    /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1773    /// and [`as_non_null`].
1774    /// Note that calling other methods that materialize references to the slice,
1775    /// or references to specific elements you are planning on accessing through this pointer,
1776    /// may still invalidate this pointer.
1777    /// See the second example below for how this guarantee can be used.
1778    ///
1779    /// # Examples
1780    ///
1781    /// ```
1782    /// #![feature(box_vec_non_null)]
1783    ///
1784    /// // Allocate vector big enough for 4 elements.
1785    /// let size = 4;
1786    /// let mut x: Vec<i32> = Vec::with_capacity(size);
1787    /// let x_ptr = x.as_non_null();
1788    ///
1789    /// // Initialize elements via raw pointer writes, then set length.
1790    /// unsafe {
1791    ///     for i in 0..size {
1792    ///         x_ptr.add(i).write(i as i32);
1793    ///     }
1794    ///     x.set_len(size);
1795    /// }
1796    /// assert_eq!(&*x, &[0, 1, 2, 3]);
1797    /// ```
1798    ///
1799    /// Due to the aliasing guarantee, the following code is legal:
1800    ///
1801    /// ```rust
1802    /// #![feature(box_vec_non_null)]
1803    ///
1804    /// unsafe {
1805    ///     let mut v = vec![0];
1806    ///     let ptr1 = v.as_non_null();
1807    ///     ptr1.write(1);
1808    ///     let ptr2 = v.as_non_null();
1809    ///     ptr2.write(2);
1810    ///     // Notably, the write to `ptr2` did *not* invalidate `ptr1`:
1811    ///     ptr1.write(3);
1812    /// }
1813    /// ```
1814    ///
1815    /// [`as_mut_ptr`]: Vec::as_mut_ptr
1816    /// [`as_ptr`]: Vec::as_ptr
1817    /// [`as_non_null`]: Vec::as_non_null
1818    #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1819    #[inline]
1820    pub fn as_non_null(&mut self) -> NonNull<T> {
1821        // SAFETY: A `Vec` always has a non-null pointer.
1822        unsafe { NonNull::new_unchecked(self.as_mut_ptr()) }
1823    }
1824
1825    /// Returns a reference to the underlying allocator.
1826    #[unstable(feature = "allocator_api", issue = "32838")]
1827    #[inline]
1828    pub fn allocator(&self) -> &A {
1829        self.buf.allocator()
1830    }
1831
1832    /// Forces the length of the vector to `new_len`.
1833    ///
1834    /// This is a low-level operation that maintains none of the normal
1835    /// invariants of the type. Normally changing the length of a vector
1836    /// is done using one of the safe operations instead, such as
1837    /// [`truncate`], [`resize`], [`extend`], or [`clear`].
1838    ///
1839    /// [`truncate`]: Vec::truncate
1840    /// [`resize`]: Vec::resize
1841    /// [`extend`]: Extend::extend
1842    /// [`clear`]: Vec::clear
1843    ///
1844    /// # Safety
1845    ///
1846    /// - `new_len` must be less than or equal to [`capacity()`].
1847    /// - The elements at `old_len..new_len` must be initialized.
1848    ///
1849    /// [`capacity()`]: Vec::capacity
1850    ///
1851    /// # Examples
1852    ///
1853    /// See [`spare_capacity_mut()`] for an example with safe
1854    /// initialization of capacity elements and use of this method.
1855    ///
1856    /// `set_len()` can be useful for situations in which the vector
1857    /// is serving as a buffer for other code, particularly over FFI:
1858    ///
1859    /// ```no_run
1860    /// # #![allow(dead_code)]
1861    /// # // This is just a minimal skeleton for the doc example;
1862    /// # // don't use this as a starting point for a real library.
1863    /// # pub struct StreamWrapper { strm: *mut std::ffi::c_void }
1864    /// # const Z_OK: i32 = 0;
1865    /// # unsafe extern "C" {
1866    /// #     fn deflateGetDictionary(
1867    /// #         strm: *mut std::ffi::c_void,
1868    /// #         dictionary: *mut u8,
1869    /// #         dictLength: *mut usize,
1870    /// #     ) -> i32;
1871    /// # }
1872    /// # impl StreamWrapper {
1873    /// pub fn get_dictionary(&self) -> Option<Vec<u8>> {
1874    ///     // Per the FFI method's docs, "32768 bytes is always enough".
1875    ///     let mut dict = Vec::with_capacity(32_768);
1876    ///     let mut dict_length = 0;
1877    ///     // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that:
1878    ///     // 1. `dict_length` elements were initialized.
1879    ///     // 2. `dict_length` <= the capacity (32_768)
1880    ///     // which makes `set_len` safe to call.
1881    ///     unsafe {
1882    ///         // Make the FFI call...
1883    ///         let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length);
1884    ///         if r == Z_OK {
1885    ///             // ...and update the length to what was initialized.
1886    ///             dict.set_len(dict_length);
1887    ///             Some(dict)
1888    ///         } else {
1889    ///             None
1890    ///         }
1891    ///     }
1892    /// }
1893    /// # }
1894    /// ```
1895    ///
1896    /// While the following example is sound, there is a memory leak since
1897    /// the inner vectors were not freed prior to the `set_len` call:
1898    ///
1899    /// ```
1900    /// let mut vec = vec![vec![1, 0, 0],
1901    ///                    vec![0, 1, 0],
1902    ///                    vec![0, 0, 1]];
1903    /// // SAFETY:
1904    /// // 1. `old_len..0` is empty so no elements need to be initialized.
1905    /// // 2. `0 <= capacity` always holds whatever `capacity` is.
1906    /// unsafe {
1907    ///     vec.set_len(0);
1908    /// #   // FIXME(https://github.com/rust-lang/miri/issues/3670):
1909    /// #   // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
1910    /// #   vec.set_len(3);
1911    /// }
1912    /// ```
1913    ///
1914    /// Normally, here, one would use [`clear`] instead to correctly drop
1915    /// the contents and thus not leak memory.
1916    ///
1917    /// [`spare_capacity_mut()`]: Vec::spare_capacity_mut
1918    #[inline]
1919    #[stable(feature = "rust1", since = "1.0.0")]
1920    pub unsafe fn set_len(&mut self, new_len: usize) {
1921        debug_assert!(new_len <= self.capacity());
1922
1923        self.len = new_len;
1924    }
1925
1926    /// Removes an element from the vector and returns it.
1927    ///
1928    /// The removed element is replaced by the last element of the vector.
1929    ///
1930    /// This does not preserve ordering of the remaining elements, but is *O*(1).
1931    /// If you need to preserve the element order, use [`remove`] instead.
1932    ///
1933    /// [`remove`]: Vec::remove
1934    ///
1935    /// # Panics
1936    ///
1937    /// Panics if `index` is out of bounds.
1938    ///
1939    /// # Examples
1940    ///
1941    /// ```
1942    /// let mut v = vec!["foo", "bar", "baz", "qux"];
1943    ///
1944    /// assert_eq!(v.swap_remove(1), "bar");
1945    /// assert_eq!(v, ["foo", "qux", "baz"]);
1946    ///
1947    /// assert_eq!(v.swap_remove(0), "foo");
1948    /// assert_eq!(v, ["baz", "qux"]);
1949    /// ```
1950    #[inline]
1951    #[stable(feature = "rust1", since = "1.0.0")]
1952    pub fn swap_remove(&mut self, index: usize) -> T {
1953        #[cold]
1954        #[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
1955        #[track_caller]
1956        #[optimize(size)]
1957        fn assert_failed(index: usize, len: usize) -> ! {
1958            panic!("swap_remove index (is {index}) should be < len (is {len})");
1959        }
1960
1961        let len = self.len();
1962        if index >= len {
1963            assert_failed(index, len);
1964        }
1965        unsafe {
1966            // We replace self[index] with the last element. Note that if the
1967            // bounds check above succeeds there must be a last element (which
1968            // can be self[index] itself).
1969            let value = ptr::read(self.as_ptr().add(index));
1970            let base_ptr = self.as_mut_ptr();
1971            ptr::copy(base_ptr.add(len - 1), base_ptr.add(index), 1);
1972            self.set_len(len - 1);
1973            value
1974        }
1975    }
1976
1977    /// Inserts an element at position `index` within the vector, shifting all
1978    /// elements after it to the right.
1979    ///
1980    /// # Panics
1981    ///
1982    /// Panics if `index > len`.
1983    ///
1984    /// # Examples
1985    ///
1986    /// ```
1987    /// let mut vec = vec!['a', 'b', 'c'];
1988    /// vec.insert(1, 'd');
1989    /// assert_eq!(vec, ['a', 'd', 'b', 'c']);
1990    /// vec.insert(4, 'e');
1991    /// assert_eq!(vec, ['a', 'd', 'b', 'c', 'e']);
1992    /// ```
1993    ///
1994    /// # Time complexity
1995    ///
1996    /// Takes *O*([`Vec::len`]) time. All items after the insertion index must be
1997    /// shifted to the right. In the worst case, all elements are shifted when
1998    /// the insertion index is 0.
1999    #[cfg(not(no_global_oom_handling))]
2000    #[stable(feature = "rust1", since = "1.0.0")]
2001    #[track_caller]
2002    pub fn insert(&mut self, index: usize, element: T) {
2003        #[cold]
2004        #[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
2005        #[track_caller]
2006        #[optimize(size)]
2007        fn assert_failed(index: usize, len: usize) -> ! {
2008            panic!("insertion index (is {index}) should be <= len (is {len})");
2009        }
2010
2011        let len = self.len();
2012        if index > len {
2013            assert_failed(index, len);
2014        }
2015
2016        // space for the new element
2017        if len == self.buf.capacity() {
2018            self.buf.grow_one();
2019        }
2020
2021        unsafe {
2022            // infallible
2023            // The spot to put the new value
2024            {
2025                let p = self.as_mut_ptr().add(index);
2026                if index < len {
2027                    // Shift everything over to make space. (Duplicating the
2028                    // `index`th element into two consecutive places.)
2029                    ptr::copy(p, p.add(1), len - index);
2030                }
2031                // Write it in, overwriting the first copy of the `index`th
2032                // element.
2033                ptr::write(p, element);
2034            }
2035            self.set_len(len + 1);
2036        }
2037    }
2038
2039    /// Removes and returns the element at position `index` within the vector,
2040    /// shifting all elements after it to the left.
2041    ///
2042    /// Note: Because this shifts over the remaining elements, it has a
2043    /// worst-case performance of *O*(*n*). If you don't need the order of elements
2044    /// to be preserved, use [`swap_remove`] instead. If you'd like to remove
2045    /// elements from the beginning of the `Vec`, consider using
2046    /// [`VecDeque::pop_front`] instead.
2047    ///
2048    /// [`swap_remove`]: Vec::swap_remove
2049    /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2050    ///
2051    /// # Panics
2052    ///
2053    /// Panics if `index` is out of bounds.
2054    ///
2055    /// # Examples
2056    ///
2057    /// ```
2058    /// let mut v = vec!['a', 'b', 'c'];
2059    /// assert_eq!(v.remove(1), 'b');
2060    /// assert_eq!(v, ['a', 'c']);
2061    /// ```
2062    #[stable(feature = "rust1", since = "1.0.0")]
2063    #[track_caller]
2064    #[rustc_confusables("delete", "take")]
2065    pub fn remove(&mut self, index: usize) -> T {
2066        #[cold]
2067        #[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
2068        #[track_caller]
2069        #[optimize(size)]
2070        fn assert_failed(index: usize, len: usize) -> ! {
2071            panic!("removal index (is {index}) should be < len (is {len})");
2072        }
2073
2074        let len = self.len();
2075        if index >= len {
2076            assert_failed(index, len);
2077        }
2078        unsafe {
2079            // infallible
2080            let ret;
2081            {
2082                // the place we are taking from.
2083                let ptr = self.as_mut_ptr().add(index);
2084                // copy it out, unsafely having a copy of the value on
2085                // the stack and in the vector at the same time.
2086                ret = ptr::read(ptr);
2087
2088                // Shift everything down to fill in that spot.
2089                ptr::copy(ptr.add(1), ptr, len - index - 1);
2090            }
2091            self.set_len(len - 1);
2092            ret
2093        }
2094    }
2095
2096    /// Retains only the elements specified by the predicate.
2097    ///
2098    /// In other words, remove all elements `e` for which `f(&e)` returns `false`.
2099    /// This method operates in place, visiting each element exactly once in the
2100    /// original order, and preserves the order of the retained elements.
2101    ///
2102    /// # Examples
2103    ///
2104    /// ```
2105    /// let mut vec = vec![1, 2, 3, 4];
2106    /// vec.retain(|&x| x % 2 == 0);
2107    /// assert_eq!(vec, [2, 4]);
2108    /// ```
2109    ///
2110    /// Because the elements are visited exactly once in the original order,
2111    /// external state may be used to decide which elements to keep.
2112    ///
2113    /// ```
2114    /// let mut vec = vec![1, 2, 3, 4, 5];
2115    /// let keep = [false, true, true, false, true];
2116    /// let mut iter = keep.iter();
2117    /// vec.retain(|_| *iter.next().unwrap());
2118    /// assert_eq!(vec, [2, 3, 5]);
2119    /// ```
2120    #[stable(feature = "rust1", since = "1.0.0")]
2121    pub fn retain<F>(&mut self, mut f: F)
2122    where
2123        F: FnMut(&T) -> bool,
2124    {
2125        self.retain_mut(|elem| f(elem));
2126    }
2127
2128    /// Retains only the elements specified by the predicate, passing a mutable reference to it.
2129    ///
2130    /// In other words, remove all elements `e` such that `f(&mut e)` returns `false`.
2131    /// This method operates in place, visiting each element exactly once in the
2132    /// original order, and preserves the order of the retained elements.
2133    ///
2134    /// # Examples
2135    ///
2136    /// ```
2137    /// let mut vec = vec![1, 2, 3, 4];
2138    /// vec.retain_mut(|x| if *x <= 3 {
2139    ///     *x += 1;
2140    ///     true
2141    /// } else {
2142    ///     false
2143    /// });
2144    /// assert_eq!(vec, [2, 3, 4]);
2145    /// ```
2146    #[stable(feature = "vec_retain_mut", since = "1.61.0")]
2147    pub fn retain_mut<F>(&mut self, mut f: F)
2148    where
2149        F: FnMut(&mut T) -> bool,
2150    {
2151        let original_len = self.len();
2152
2153        if original_len == 0 {
2154            // Empty case: explicit return allows better optimization, vs letting compiler infer it
2155            return;
2156        }
2157
2158        // Avoid double drop if the drop guard is not executed,
2159        // since we may make some holes during the process.
2160        unsafe { self.set_len(0) };
2161
2162        // Vec: [Kept, Kept, Hole, Hole, Hole, Hole, Unchecked, Unchecked]
2163        //      |<-              processed len   ->| ^- next to check
2164        //                  |<-  deleted cnt     ->|
2165        //      |<-              original_len                          ->|
2166        // Kept: Elements which predicate returns true on.
2167        // Hole: Moved or dropped element slot.
2168        // Unchecked: Unchecked valid elements.
2169        //
2170        // This drop guard will be invoked when predicate or `drop` of element panicked.
2171        // It shifts unchecked elements to cover holes and `set_len` to the correct length.
2172        // In cases when predicate and `drop` never panick, it will be optimized out.
2173        struct BackshiftOnDrop<'a, T, A: Allocator> {
2174            v: &'a mut Vec<T, A>,
2175            processed_len: usize,
2176            deleted_cnt: usize,
2177            original_len: usize,
2178        }
2179
2180        impl<T, A: Allocator> Drop for BackshiftOnDrop<'_, T, A> {
2181            fn drop(&mut self) {
2182                if self.deleted_cnt > 0 {
2183                    // SAFETY: Trailing unchecked items must be valid since we never touch them.
2184                    unsafe {
2185                        ptr::copy(
2186                            self.v.as_ptr().add(self.processed_len),
2187                            self.v.as_mut_ptr().add(self.processed_len - self.deleted_cnt),
2188                            self.original_len - self.processed_len,
2189                        );
2190                    }
2191                }
2192                // SAFETY: After filling holes, all items are in contiguous memory.
2193                unsafe {
2194                    self.v.set_len(self.original_len - self.deleted_cnt);
2195                }
2196            }
2197        }
2198
2199        let mut g = BackshiftOnDrop { v: self, processed_len: 0, deleted_cnt: 0, original_len };
2200
2201        fn process_loop<F, T, A: Allocator, const DELETED: bool>(
2202            original_len: usize,
2203            f: &mut F,
2204            g: &mut BackshiftOnDrop<'_, T, A>,
2205        ) where
2206            F: FnMut(&mut T) -> bool,
2207        {
2208            while g.processed_len != original_len {
2209                // SAFETY: Unchecked element must be valid.
2210                let cur = unsafe { &mut *g.v.as_mut_ptr().add(g.processed_len) };
2211                if !f(cur) {
2212                    // Advance early to avoid double drop if `drop_in_place` panicked.
2213                    g.processed_len += 1;
2214                    g.deleted_cnt += 1;
2215                    // SAFETY: We never touch this element again after dropped.
2216                    unsafe { ptr::drop_in_place(cur) };
2217                    // We already advanced the counter.
2218                    if DELETED {
2219                        continue;
2220                    } else {
2221                        break;
2222                    }
2223                }
2224                if DELETED {
2225                    // SAFETY: `deleted_cnt` > 0, so the hole slot must not overlap with current element.
2226                    // We use copy for move, and never touch this element again.
2227                    unsafe {
2228                        let hole_slot = g.v.as_mut_ptr().add(g.processed_len - g.deleted_cnt);
2229                        ptr::copy_nonoverlapping(cur, hole_slot, 1);
2230                    }
2231                }
2232                g.processed_len += 1;
2233            }
2234        }
2235
2236        // Stage 1: Nothing was deleted.
2237        process_loop::<F, T, A, false>(original_len, &mut f, &mut g);
2238
2239        // Stage 2: Some elements were deleted.
2240        process_loop::<F, T, A, true>(original_len, &mut f, &mut g);
2241
2242        // All item are processed. This can be optimized to `set_len` by LLVM.
2243        drop(g);
2244    }
2245
2246    /// Removes all but the first of consecutive elements in the vector that resolve to the same
2247    /// key.
2248    ///
2249    /// If the vector is sorted, this removes all duplicates.
2250    ///
2251    /// # Examples
2252    ///
2253    /// ```
2254    /// let mut vec = vec![10, 20, 21, 30, 20];
2255    ///
2256    /// vec.dedup_by_key(|i| *i / 10);
2257    ///
2258    /// assert_eq!(vec, [10, 20, 30, 20]);
2259    /// ```
2260    #[stable(feature = "dedup_by", since = "1.16.0")]
2261    #[inline]
2262    pub fn dedup_by_key<F, K>(&mut self, mut key: F)
2263    where
2264        F: FnMut(&mut T) -> K,
2265        K: PartialEq,
2266    {
2267        self.dedup_by(|a, b| key(a) == key(b))
2268    }
2269
2270    /// Removes all but the first of consecutive elements in the vector satisfying a given equality
2271    /// relation.
2272    ///
2273    /// The `same_bucket` function is passed references to two elements from the vector and
2274    /// must determine if the elements compare equal. The elements are passed in opposite order
2275    /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is removed.
2276    ///
2277    /// If the vector is sorted, this removes all duplicates.
2278    ///
2279    /// # Examples
2280    ///
2281    /// ```
2282    /// let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"];
2283    ///
2284    /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
2285    ///
2286    /// assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
2287    /// ```
2288    #[stable(feature = "dedup_by", since = "1.16.0")]
2289    pub fn dedup_by<F>(&mut self, mut same_bucket: F)
2290    where
2291        F: FnMut(&mut T, &mut T) -> bool,
2292    {
2293        let len = self.len();
2294        if len <= 1 {
2295            return;
2296        }
2297
2298        // Check if we ever want to remove anything.
2299        // This allows to use copy_non_overlapping in next cycle.
2300        // And avoids any memory writes if we don't need to remove anything.
2301        let mut first_duplicate_idx: usize = 1;
2302        let start = self.as_mut_ptr();
2303        while first_duplicate_idx != len {
2304            let found_duplicate = unsafe {
2305                // SAFETY: first_duplicate always in range [1..len)
2306                // Note that we start iteration from 1 so we never overflow.
2307                let prev = start.add(first_duplicate_idx.wrapping_sub(1));
2308                let current = start.add(first_duplicate_idx);
2309                // We explicitly say in docs that references are reversed.
2310                same_bucket(&mut *current, &mut *prev)
2311            };
2312            if found_duplicate {
2313                break;
2314            }
2315            first_duplicate_idx += 1;
2316        }
2317        // Don't need to remove anything.
2318        // We cannot get bigger than len.
2319        if first_duplicate_idx == len {
2320            return;
2321        }
2322
2323        /* INVARIANT: vec.len() > read > write > write-1 >= 0 */
2324        struct FillGapOnDrop<'a, T, A: core::alloc::Allocator> {
2325            /* Offset of the element we want to check if it is duplicate */
2326            read: usize,
2327
2328            /* Offset of the place where we want to place the non-duplicate
2329             * when we find it. */
2330            write: usize,
2331
2332            /* The Vec that would need correction if `same_bucket` panicked */
2333            vec: &'a mut Vec<T, A>,
2334        }
2335
2336        impl<'a, T, A: core::alloc::Allocator> Drop for FillGapOnDrop<'a, T, A> {
2337            fn drop(&mut self) {
2338                /* This code gets executed when `same_bucket` panics */
2339
2340                /* SAFETY: invariant guarantees that `read - write`
2341                 * and `len - read` never overflow and that the copy is always
2342                 * in-bounds. */
2343                unsafe {
2344                    let ptr = self.vec.as_mut_ptr();
2345                    let len = self.vec.len();
2346
2347                    /* How many items were left when `same_bucket` panicked.
2348                     * Basically vec[read..].len() */
2349                    let items_left = len.wrapping_sub(self.read);
2350
2351                    /* Pointer to first item in vec[write..write+items_left] slice */
2352                    let dropped_ptr = ptr.add(self.write);
2353                    /* Pointer to first item in vec[read..] slice */
2354                    let valid_ptr = ptr.add(self.read);
2355
2356                    /* Copy `vec[read..]` to `vec[write..write+items_left]`.
2357                     * The slices can overlap, so `copy_nonoverlapping` cannot be used */
2358                    ptr::copy(valid_ptr, dropped_ptr, items_left);
2359
2360                    /* How many items have been already dropped
2361                     * Basically vec[read..write].len() */
2362                    let dropped = self.read.wrapping_sub(self.write);
2363
2364                    self.vec.set_len(len - dropped);
2365                }
2366            }
2367        }
2368
2369        /* Drop items while going through Vec, it should be more efficient than
2370         * doing slice partition_dedup + truncate */
2371
2372        // Construct gap first and then drop item to avoid memory corruption if `T::drop` panics.
2373        let mut gap =
2374            FillGapOnDrop { read: first_duplicate_idx + 1, write: first_duplicate_idx, vec: self };
2375        unsafe {
2376            // SAFETY: we checked that first_duplicate_idx in bounds before.
2377            // If drop panics, `gap` would remove this item without drop.
2378            ptr::drop_in_place(start.add(first_duplicate_idx));
2379        }
2380
2381        /* SAFETY: Because of the invariant, read_ptr, prev_ptr and write_ptr
2382         * are always in-bounds and read_ptr never aliases prev_ptr */
2383        unsafe {
2384            while gap.read < len {
2385                let read_ptr = start.add(gap.read);
2386                let prev_ptr = start.add(gap.write.wrapping_sub(1));
2387
2388                // We explicitly say in docs that references are reversed.
2389                let found_duplicate = same_bucket(&mut *read_ptr, &mut *prev_ptr);
2390                if found_duplicate {
2391                    // Increase `gap.read` now since the drop may panic.
2392                    gap.read += 1;
2393                    /* We have found duplicate, drop it in-place */
2394                    ptr::drop_in_place(read_ptr);
2395                } else {
2396                    let write_ptr = start.add(gap.write);
2397
2398                    /* read_ptr cannot be equal to write_ptr because at this point
2399                     * we guaranteed to skip at least one element (before loop starts).
2400                     */
2401                    ptr::copy_nonoverlapping(read_ptr, write_ptr, 1);
2402
2403                    /* We have filled that place, so go further */
2404                    gap.write += 1;
2405                    gap.read += 1;
2406                }
2407            }
2408
2409            /* Technically we could let `gap` clean up with its Drop, but
2410             * when `same_bucket` is guaranteed to not panic, this bloats a little
2411             * the codegen, so we just do it manually */
2412            gap.vec.set_len(gap.write);
2413            mem::forget(gap);
2414        }
2415    }
2416
2417    /// Appends an element to the back of a collection.
2418    ///
2419    /// # Panics
2420    ///
2421    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
2422    ///
2423    /// # Examples
2424    ///
2425    /// ```
2426    /// let mut vec = vec![1, 2];
2427    /// vec.push(3);
2428    /// assert_eq!(vec, [1, 2, 3]);
2429    /// ```
2430    ///
2431    /// # Time complexity
2432    ///
2433    /// Takes amortized *O*(1) time. If the vector's length would exceed its
2434    /// capacity after the push, *O*(*capacity*) time is taken to copy the
2435    /// vector's elements to a larger allocation. This expensive operation is
2436    /// offset by the *capacity* *O*(1) insertions it allows.
2437    #[cfg(not(no_global_oom_handling))]
2438    #[inline]
2439    #[stable(feature = "rust1", since = "1.0.0")]
2440    #[rustc_confusables("push_back", "put", "append")]
2441    #[track_caller]
2442    pub fn push(&mut self, value: T) {
2443        // Inform codegen that the length does not change across grow_one().
2444        let len = self.len;
2445        // This will panic or abort if we would allocate > isize::MAX bytes
2446        // or if the length increment would overflow for zero-sized types.
2447        if len == self.buf.capacity() {
2448            self.buf.grow_one();
2449        }
2450        unsafe {
2451            let end = self.as_mut_ptr().add(len);
2452            ptr::write(end, value);
2453            self.len = len + 1;
2454        }
2455    }
2456
2457    /// Appends an element if there is sufficient spare capacity, otherwise an error is returned
2458    /// with the element.
2459    ///
2460    /// Unlike [`push`] this method will not reallocate when there's insufficient capacity.
2461    /// The caller should use [`reserve`] or [`try_reserve`] to ensure that there is enough capacity.
2462    ///
2463    /// [`push`]: Vec::push
2464    /// [`reserve`]: Vec::reserve
2465    /// [`try_reserve`]: Vec::try_reserve
2466    ///
2467    /// # Examples
2468    ///
2469    /// A manual, panic-free alternative to [`FromIterator`]:
2470    ///
2471    /// ```
2472    /// #![feature(vec_push_within_capacity)]
2473    ///
2474    /// use std::collections::TryReserveError;
2475    /// fn from_iter_fallible<T>(iter: impl Iterator<Item=T>) -> Result<Vec<T>, TryReserveError> {
2476    ///     let mut vec = Vec::new();
2477    ///     for value in iter {
2478    ///         if let Err(value) = vec.push_within_capacity(value) {
2479    ///             vec.try_reserve(1)?;
2480    ///             // this cannot fail, the previous line either returned or added at least 1 free slot
2481    ///             let _ = vec.push_within_capacity(value);
2482    ///         }
2483    ///     }
2484    ///     Ok(vec)
2485    /// }
2486    /// assert_eq!(from_iter_fallible(0..100), Ok(Vec::from_iter(0..100)));
2487    /// ```
2488    ///
2489    /// # Time complexity
2490    ///
2491    /// Takes *O*(1) time.
2492    #[inline]
2493    #[unstable(feature = "vec_push_within_capacity", issue = "100486")]
2494    pub fn push_within_capacity(&mut self, value: T) -> Result<(), T> {
2495        if self.len == self.buf.capacity() {
2496            return Err(value);
2497        }
2498        unsafe {
2499            let end = self.as_mut_ptr().add(self.len);
2500            ptr::write(end, value);
2501            self.len += 1;
2502        }
2503        Ok(())
2504    }
2505
2506    /// Removes the last element from a vector and returns it, or [`None`] if it
2507    /// is empty.
2508    ///
2509    /// If you'd like to pop the first element, consider using
2510    /// [`VecDeque::pop_front`] instead.
2511    ///
2512    /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2513    ///
2514    /// # Examples
2515    ///
2516    /// ```
2517    /// let mut vec = vec![1, 2, 3];
2518    /// assert_eq!(vec.pop(), Some(3));
2519    /// assert_eq!(vec, [1, 2]);
2520    /// ```
2521    ///
2522    /// # Time complexity
2523    ///
2524    /// Takes *O*(1) time.
2525    #[inline]
2526    #[stable(feature = "rust1", since = "1.0.0")]
2527    #[rustc_diagnostic_item = "vec_pop"]
2528    pub fn pop(&mut self) -> Option<T> {
2529        if self.len == 0 {
2530            None
2531        } else {
2532            unsafe {
2533                self.len -= 1;
2534                core::hint::assert_unchecked(self.len < self.capacity());
2535                Some(ptr::read(self.as_ptr().add(self.len())))
2536            }
2537        }
2538    }
2539
2540    /// Removes and returns the last element from a vector if the predicate
2541    /// returns `true`, or [`None`] if the predicate returns false or the vector
2542    /// is empty (the predicate will not be called in that case).
2543    ///
2544    /// # Examples
2545    ///
2546    /// ```
2547    /// let mut vec = vec![1, 2, 3, 4];
2548    /// let pred = |x: &mut i32| *x % 2 == 0;
2549    ///
2550    /// assert_eq!(vec.pop_if(pred), Some(4));
2551    /// assert_eq!(vec, [1, 2, 3]);
2552    /// assert_eq!(vec.pop_if(pred), None);
2553    /// ```
2554    #[stable(feature = "vec_pop_if", since = "1.86.0")]
2555    pub fn pop_if(&mut self, predicate: impl FnOnce(&mut T) -> bool) -> Option<T> {
2556        let last = self.last_mut()?;
2557        if predicate(last) { self.pop() } else { None }
2558    }
2559
2560    /// Moves all the elements of `other` into `self`, leaving `other` empty.
2561    ///
2562    /// # Panics
2563    ///
2564    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
2565    ///
2566    /// # Examples
2567    ///
2568    /// ```
2569    /// let mut vec = vec![1, 2, 3];
2570    /// let mut vec2 = vec![4, 5, 6];
2571    /// vec.append(&mut vec2);
2572    /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
2573    /// assert_eq!(vec2, []);
2574    /// ```
2575    #[cfg(not(no_global_oom_handling))]
2576    #[inline]
2577    #[stable(feature = "append", since = "1.4.0")]
2578    #[track_caller]
2579    pub fn append(&mut self, other: &mut Self) {
2580        unsafe {
2581            self.append_elements(other.as_slice() as _);
2582            other.set_len(0);
2583        }
2584    }
2585
2586    /// Appends elements to `self` from other buffer.
2587    #[cfg(not(no_global_oom_handling))]
2588    #[inline]
2589    #[track_caller]
2590    unsafe fn append_elements(&mut self, other: *const [T]) {
2591        let count = unsafe { (*other).len() };
2592        self.reserve(count);
2593        let len = self.len();
2594        unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) };
2595        self.len += count;
2596    }
2597
2598    /// Removes the subslice indicated by the given range from the vector,
2599    /// returning a double-ended iterator over the removed subslice.
2600    ///
2601    /// If the iterator is dropped before being fully consumed,
2602    /// it drops the remaining removed elements.
2603    ///
2604    /// The returned iterator keeps a mutable borrow on the vector to optimize
2605    /// its implementation.
2606    ///
2607    /// # Panics
2608    ///
2609    /// Panics if the starting point is greater than the end point or if
2610    /// the end point is greater than the length of the vector.
2611    ///
2612    /// # Leaking
2613    ///
2614    /// If the returned iterator goes out of scope without being dropped (due to
2615    /// [`mem::forget`], for example), the vector may have lost and leaked
2616    /// elements arbitrarily, including elements outside the range.
2617    ///
2618    /// # Examples
2619    ///
2620    /// ```
2621    /// let mut v = vec![1, 2, 3];
2622    /// let u: Vec<_> = v.drain(1..).collect();
2623    /// assert_eq!(v, &[1]);
2624    /// assert_eq!(u, &[2, 3]);
2625    ///
2626    /// // A full range clears the vector, like `clear()` does
2627    /// v.drain(..);
2628    /// assert_eq!(v, &[]);
2629    /// ```
2630    #[stable(feature = "drain", since = "1.6.0")]
2631    pub fn drain<R>(&mut self, range: R) -> Drain<'_, T, A>
2632    where
2633        R: RangeBounds<usize>,
2634    {
2635        // Memory safety
2636        //
2637        // When the Drain is first created, it shortens the length of
2638        // the source vector to make sure no uninitialized or moved-from elements
2639        // are accessible at all if the Drain's destructor never gets to run.
2640        //
2641        // Drain will ptr::read out the values to remove.
2642        // When finished, remaining tail of the vec is copied back to cover
2643        // the hole, and the vector length is restored to the new length.
2644        //
2645        let len = self.len();
2646        let Range { start, end } = slice::range(range, ..len);
2647
2648        unsafe {
2649            // set self.vec length's to start, to be safe in case Drain is leaked
2650            self.set_len(start);
2651            let range_slice = slice::from_raw_parts(self.as_ptr().add(start), end - start);
2652            Drain {
2653                tail_start: end,
2654                tail_len: len - end,
2655                iter: range_slice.iter(),
2656                vec: NonNull::from(self),
2657            }
2658        }
2659    }
2660
2661    /// Clears the vector, removing all values.
2662    ///
2663    /// Note that this method has no effect on the allocated capacity
2664    /// of the vector.
2665    ///
2666    /// # Examples
2667    ///
2668    /// ```
2669    /// let mut v = vec![1, 2, 3];
2670    ///
2671    /// v.clear();
2672    ///
2673    /// assert!(v.is_empty());
2674    /// ```
2675    #[inline]
2676    #[stable(feature = "rust1", since = "1.0.0")]
2677    pub fn clear(&mut self) {
2678        let elems: *mut [T] = self.as_mut_slice();
2679
2680        // SAFETY:
2681        // - `elems` comes directly from `as_mut_slice` and is therefore valid.
2682        // - Setting `self.len` before calling `drop_in_place` means that,
2683        //   if an element's `Drop` impl panics, the vector's `Drop` impl will
2684        //   do nothing (leaking the rest of the elements) instead of dropping
2685        //   some twice.
2686        unsafe {
2687            self.len = 0;
2688            ptr::drop_in_place(elems);
2689        }
2690    }
2691
2692    /// Returns the number of elements in the vector, also referred to
2693    /// as its 'length'.
2694    ///
2695    /// # Examples
2696    ///
2697    /// ```
2698    /// let a = vec![1, 2, 3];
2699    /// assert_eq!(a.len(), 3);
2700    /// ```
2701    #[inline]
2702    #[stable(feature = "rust1", since = "1.0.0")]
2703    #[rustc_const_stable(feature = "const_vec_string_slice", since = "CURRENT_RUSTC_VERSION")]
2704    #[rustc_confusables("length", "size")]
2705    pub const fn len(&self) -> usize {
2706        let len = self.len;
2707
2708        // SAFETY: The maximum capacity of `Vec<T>` is `isize::MAX` bytes, so the maximum value can
2709        // be returned is `usize::checked_div(size_of::<T>()).unwrap_or(usize::MAX)`, which
2710        // matches the definition of `T::MAX_SLICE_LEN`.
2711        unsafe { intrinsics::assume(len <= T::MAX_SLICE_LEN) };
2712
2713        len
2714    }
2715
2716    /// Returns `true` if the vector contains no elements.
2717    ///
2718    /// # Examples
2719    ///
2720    /// ```
2721    /// let mut v = Vec::new();
2722    /// assert!(v.is_empty());
2723    ///
2724    /// v.push(1);
2725    /// assert!(!v.is_empty());
2726    /// ```
2727    #[stable(feature = "rust1", since = "1.0.0")]
2728    #[rustc_diagnostic_item = "vec_is_empty"]
2729    #[rustc_const_stable(feature = "const_vec_string_slice", since = "CURRENT_RUSTC_VERSION")]
2730    pub const fn is_empty(&self) -> bool {
2731        self.len() == 0
2732    }
2733
2734    /// Splits the collection into two at the given index.
2735    ///
2736    /// Returns a newly allocated vector containing the elements in the range
2737    /// `[at, len)`. After the call, the original vector will be left containing
2738    /// the elements `[0, at)` with its previous capacity unchanged.
2739    ///
2740    /// - If you want to take ownership of the entire contents and capacity of
2741    ///   the vector, see [`mem::take`] or [`mem::replace`].
2742    /// - If you don't need the returned vector at all, see [`Vec::truncate`].
2743    /// - If you want to take ownership of an arbitrary subslice, or you don't
2744    ///   necessarily want to store the removed items in a vector, see [`Vec::drain`].
2745    ///
2746    /// # Panics
2747    ///
2748    /// Panics if `at > len`.
2749    ///
2750    /// # Examples
2751    ///
2752    /// ```
2753    /// let mut vec = vec!['a', 'b', 'c'];
2754    /// let vec2 = vec.split_off(1);
2755    /// assert_eq!(vec, ['a']);
2756    /// assert_eq!(vec2, ['b', 'c']);
2757    /// ```
2758    #[cfg(not(no_global_oom_handling))]
2759    #[inline]
2760    #[must_use = "use `.truncate()` if you don't need the other half"]
2761    #[stable(feature = "split_off", since = "1.4.0")]
2762    #[track_caller]
2763    pub fn split_off(&mut self, at: usize) -> Self
2764    where
2765        A: Clone,
2766    {
2767        #[cold]
2768        #[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
2769        #[track_caller]
2770        #[optimize(size)]
2771        fn assert_failed(at: usize, len: usize) -> ! {
2772            panic!("`at` split index (is {at}) should be <= len (is {len})");
2773        }
2774
2775        if at > self.len() {
2776            assert_failed(at, self.len());
2777        }
2778
2779        let other_len = self.len - at;
2780        let mut other = Vec::with_capacity_in(other_len, self.allocator().clone());
2781
2782        // Unsafely `set_len` and copy items to `other`.
2783        unsafe {
2784            self.set_len(at);
2785            other.set_len(other_len);
2786
2787            ptr::copy_nonoverlapping(self.as_ptr().add(at), other.as_mut_ptr(), other.len());
2788        }
2789        other
2790    }
2791
2792    /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
2793    ///
2794    /// If `new_len` is greater than `len`, the `Vec` is extended by the
2795    /// difference, with each additional slot filled with the result of
2796    /// calling the closure `f`. The return values from `f` will end up
2797    /// in the `Vec` in the order they have been generated.
2798    ///
2799    /// If `new_len` is less than `len`, the `Vec` is simply truncated.
2800    ///
2801    /// This method uses a closure to create new values on every push. If
2802    /// you'd rather [`Clone`] a given value, use [`Vec::resize`]. If you
2803    /// want to use the [`Default`] trait to generate values, you can
2804    /// pass [`Default::default`] as the second argument.
2805    ///
2806    /// # Examples
2807    ///
2808    /// ```
2809    /// let mut vec = vec![1, 2, 3];
2810    /// vec.resize_with(5, Default::default);
2811    /// assert_eq!(vec, [1, 2, 3, 0, 0]);
2812    ///
2813    /// let mut vec = vec![];
2814    /// let mut p = 1;
2815    /// vec.resize_with(4, || { p *= 2; p });
2816    /// assert_eq!(vec, [2, 4, 8, 16]);
2817    /// ```
2818    #[cfg(not(no_global_oom_handling))]
2819    #[stable(feature = "vec_resize_with", since = "1.33.0")]
2820    #[track_caller]
2821    pub fn resize_with<F>(&mut self, new_len: usize, f: F)
2822    where
2823        F: FnMut() -> T,
2824    {
2825        let len = self.len();
2826        if new_len > len {
2827            self.extend_trusted(iter::repeat_with(f).take(new_len - len));
2828        } else {
2829            self.truncate(new_len);
2830        }
2831    }
2832
2833    /// Consumes and leaks the `Vec`, returning a mutable reference to the contents,
2834    /// `&'a mut [T]`.
2835    ///
2836    /// Note that the type `T` must outlive the chosen lifetime `'a`. If the type
2837    /// has only static references, or none at all, then this may be chosen to be
2838    /// `'static`.
2839    ///
2840    /// As of Rust 1.57, this method does not reallocate or shrink the `Vec`,
2841    /// so the leaked allocation may include unused capacity that is not part
2842    /// of the returned slice.
2843    ///
2844    /// This function is mainly useful for data that lives for the remainder of
2845    /// the program's life. Dropping the returned reference will cause a memory
2846    /// leak.
2847    ///
2848    /// # Examples
2849    ///
2850    /// Simple usage:
2851    ///
2852    /// ```
2853    /// let x = vec![1, 2, 3];
2854    /// let static_ref: &'static mut [usize] = x.leak();
2855    /// static_ref[0] += 1;
2856    /// assert_eq!(static_ref, &[2, 2, 3]);
2857    /// # // FIXME(https://github.com/rust-lang/miri/issues/3670):
2858    /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
2859    /// # drop(unsafe { Box::from_raw(static_ref) });
2860    /// ```
2861    #[stable(feature = "vec_leak", since = "1.47.0")]
2862    #[inline]
2863    pub fn leak<'a>(self) -> &'a mut [T]
2864    where
2865        A: 'a,
2866    {
2867        let mut me = ManuallyDrop::new(self);
2868        unsafe { slice::from_raw_parts_mut(me.as_mut_ptr(), me.len) }
2869    }
2870
2871    /// Returns the remaining spare capacity of the vector as a slice of
2872    /// `MaybeUninit<T>`.
2873    ///
2874    /// The returned slice can be used to fill the vector with data (e.g. by
2875    /// reading from a file) before marking the data as initialized using the
2876    /// [`set_len`] method.
2877    ///
2878    /// [`set_len`]: Vec::set_len
2879    ///
2880    /// # Examples
2881    ///
2882    /// ```
2883    /// // Allocate vector big enough for 10 elements.
2884    /// let mut v = Vec::with_capacity(10);
2885    ///
2886    /// // Fill in the first 3 elements.
2887    /// let uninit = v.spare_capacity_mut();
2888    /// uninit[0].write(0);
2889    /// uninit[1].write(1);
2890    /// uninit[2].write(2);
2891    ///
2892    /// // Mark the first 3 elements of the vector as being initialized.
2893    /// unsafe {
2894    ///     v.set_len(3);
2895    /// }
2896    ///
2897    /// assert_eq!(&v, &[0, 1, 2]);
2898    /// ```
2899    #[stable(feature = "vec_spare_capacity", since = "1.60.0")]
2900    #[inline]
2901    pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
2902        // Note:
2903        // This method is not implemented in terms of `split_at_spare_mut`,
2904        // to prevent invalidation of pointers to the buffer.
2905        unsafe {
2906            slice::from_raw_parts_mut(
2907                self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>,
2908                self.buf.capacity() - self.len,
2909            )
2910        }
2911    }
2912
2913    /// Returns vector content as a slice of `T`, along with the remaining spare
2914    /// capacity of the vector as a slice of `MaybeUninit<T>`.
2915    ///
2916    /// The returned spare capacity slice can be used to fill the vector with data
2917    /// (e.g. by reading from a file) before marking the data as initialized using
2918    /// the [`set_len`] method.
2919    ///
2920    /// [`set_len`]: Vec::set_len
2921    ///
2922    /// Note that this is a low-level API, which should be used with care for
2923    /// optimization purposes. If you need to append data to a `Vec`
2924    /// you can use [`push`], [`extend`], [`extend_from_slice`],
2925    /// [`extend_from_within`], [`insert`], [`append`], [`resize`] or
2926    /// [`resize_with`], depending on your exact needs.
2927    ///
2928    /// [`push`]: Vec::push
2929    /// [`extend`]: Vec::extend
2930    /// [`extend_from_slice`]: Vec::extend_from_slice
2931    /// [`extend_from_within`]: Vec::extend_from_within
2932    /// [`insert`]: Vec::insert
2933    /// [`append`]: Vec::append
2934    /// [`resize`]: Vec::resize
2935    /// [`resize_with`]: Vec::resize_with
2936    ///
2937    /// # Examples
2938    ///
2939    /// ```
2940    /// #![feature(vec_split_at_spare)]
2941    ///
2942    /// let mut v = vec![1, 1, 2];
2943    ///
2944    /// // Reserve additional space big enough for 10 elements.
2945    /// v.reserve(10);
2946    ///
2947    /// let (init, uninit) = v.split_at_spare_mut();
2948    /// let sum = init.iter().copied().sum::<u32>();
2949    ///
2950    /// // Fill in the next 4 elements.
2951    /// uninit[0].write(sum);
2952    /// uninit[1].write(sum * 2);
2953    /// uninit[2].write(sum * 3);
2954    /// uninit[3].write(sum * 4);
2955    ///
2956    /// // Mark the 4 elements of the vector as being initialized.
2957    /// unsafe {
2958    ///     let len = v.len();
2959    ///     v.set_len(len + 4);
2960    /// }
2961    ///
2962    /// assert_eq!(&v, &[1, 1, 2, 4, 8, 12, 16]);
2963    /// ```
2964    #[unstable(feature = "vec_split_at_spare", issue = "81944")]
2965    #[inline]
2966    pub fn split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>]) {
2967        // SAFETY:
2968        // - len is ignored and so never changed
2969        let (init, spare, _) = unsafe { self.split_at_spare_mut_with_len() };
2970        (init, spare)
2971    }
2972
2973    /// Safety: changing returned .2 (&mut usize) is considered the same as calling `.set_len(_)`.
2974    ///
2975    /// This method provides unique access to all vec parts at once in `extend_from_within`.
2976    unsafe fn split_at_spare_mut_with_len(
2977        &mut self,
2978    ) -> (&mut [T], &mut [MaybeUninit<T>], &mut usize) {
2979        let ptr = self.as_mut_ptr();
2980        // SAFETY:
2981        // - `ptr` is guaranteed to be valid for `self.len` elements
2982        // - but the allocation extends out to `self.buf.capacity()` elements, possibly
2983        // uninitialized
2984        let spare_ptr = unsafe { ptr.add(self.len) };
2985        let spare_ptr = spare_ptr.cast::<MaybeUninit<T>>();
2986        let spare_len = self.buf.capacity() - self.len;
2987
2988        // SAFETY:
2989        // - `ptr` is guaranteed to be valid for `self.len` elements
2990        // - `spare_ptr` is pointing one element past the buffer, so it doesn't overlap with `initialized`
2991        unsafe {
2992            let initialized = slice::from_raw_parts_mut(ptr, self.len);
2993            let spare = slice::from_raw_parts_mut(spare_ptr, spare_len);
2994
2995            (initialized, spare, &mut self.len)
2996        }
2997    }
2998}
2999
3000impl<T: Clone, A: Allocator> Vec<T, A> {
3001    /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
3002    ///
3003    /// If `new_len` is greater than `len`, the `Vec` is extended by the
3004    /// difference, with each additional slot filled with `value`.
3005    /// If `new_len` is less than `len`, the `Vec` is simply truncated.
3006    ///
3007    /// This method requires `T` to implement [`Clone`],
3008    /// in order to be able to clone the passed value.
3009    /// If you need more flexibility (or want to rely on [`Default`] instead of
3010    /// [`Clone`]), use [`Vec::resize_with`].
3011    /// If you only need to resize to a smaller size, use [`Vec::truncate`].
3012    ///
3013    /// # Examples
3014    ///
3015    /// ```
3016    /// let mut vec = vec!["hello"];
3017    /// vec.resize(3, "world");
3018    /// assert_eq!(vec, ["hello", "world", "world"]);
3019    ///
3020    /// let mut vec = vec!['a', 'b', 'c', 'd'];
3021    /// vec.resize(2, '_');
3022    /// assert_eq!(vec, ['a', 'b']);
3023    /// ```
3024    #[cfg(not(no_global_oom_handling))]
3025    #[stable(feature = "vec_resize", since = "1.5.0")]
3026    #[track_caller]
3027    pub fn resize(&mut self, new_len: usize, value: T) {
3028        let len = self.len();
3029
3030        if new_len > len {
3031            self.extend_with(new_len - len, value)
3032        } else {
3033            self.truncate(new_len);
3034        }
3035    }
3036
3037    /// Clones and appends all elements in a slice to the `Vec`.
3038    ///
3039    /// Iterates over the slice `other`, clones each element, and then appends
3040    /// it to this `Vec`. The `other` slice is traversed in-order.
3041    ///
3042    /// Note that this function is the same as [`extend`],
3043    /// except that it also works with slice elements that are Clone but not Copy.
3044    /// If Rust gets specialization this function may be deprecated.
3045    ///
3046    /// # Examples
3047    ///
3048    /// ```
3049    /// let mut vec = vec![1];
3050    /// vec.extend_from_slice(&[2, 3, 4]);
3051    /// assert_eq!(vec, [1, 2, 3, 4]);
3052    /// ```
3053    ///
3054    /// [`extend`]: Vec::extend
3055    #[cfg(not(no_global_oom_handling))]
3056    #[stable(feature = "vec_extend_from_slice", since = "1.6.0")]
3057    #[track_caller]
3058    pub fn extend_from_slice(&mut self, other: &[T]) {
3059        self.spec_extend(other.iter())
3060    }
3061
3062    /// Given a range `src`, clones a slice of elements in that range and appends it to the end.
3063    ///
3064    /// `src` must be a range that can form a valid subslice of the `Vec`.
3065    ///
3066    /// # Panics
3067    ///
3068    /// Panics if starting index is greater than the end index
3069    /// or if the index is greater than the length of the vector.
3070    ///
3071    /// # Examples
3072    ///
3073    /// ```
3074    /// let mut characters = vec!['a', 'b', 'c', 'd', 'e'];
3075    /// characters.extend_from_within(2..);
3076    /// assert_eq!(characters, ['a', 'b', 'c', 'd', 'e', 'c', 'd', 'e']);
3077    ///
3078    /// let mut numbers = vec![0, 1, 2, 3, 4];
3079    /// numbers.extend_from_within(..2);
3080    /// assert_eq!(numbers, [0, 1, 2, 3, 4, 0, 1]);
3081    ///
3082    /// let mut strings = vec![String::from("hello"), String::from("world"), String::from("!")];
3083    /// strings.extend_from_within(1..=2);
3084    /// assert_eq!(strings, ["hello", "world", "!", "world", "!"]);
3085    /// ```
3086    #[cfg(not(no_global_oom_handling))]
3087    #[stable(feature = "vec_extend_from_within", since = "1.53.0")]
3088    #[track_caller]
3089    pub fn extend_from_within<R>(&mut self, src: R)
3090    where
3091        R: RangeBounds<usize>,
3092    {
3093        let range = slice::range(src, ..self.len());
3094        self.reserve(range.len());
3095
3096        // SAFETY:
3097        // - `slice::range` guarantees that the given range is valid for indexing self
3098        unsafe {
3099            self.spec_extend_from_within(range);
3100        }
3101    }
3102}
3103
3104impl<T, A: Allocator, const N: usize> Vec<[T; N], A> {
3105    /// Takes a `Vec<[T; N]>` and flattens it into a `Vec<T>`.
3106    ///
3107    /// # Panics
3108    ///
3109    /// Panics if the length of the resulting vector would overflow a `usize`.
3110    ///
3111    /// This is only possible when flattening a vector of arrays of zero-sized
3112    /// types, and thus tends to be irrelevant in practice. If
3113    /// `size_of::<T>() > 0`, this will never panic.
3114    ///
3115    /// # Examples
3116    ///
3117    /// ```
3118    /// let mut vec = vec![[1, 2, 3], [4, 5, 6], [7, 8, 9]];
3119    /// assert_eq!(vec.pop(), Some([7, 8, 9]));
3120    ///
3121    /// let mut flattened = vec.into_flattened();
3122    /// assert_eq!(flattened.pop(), Some(6));
3123    /// ```
3124    #[stable(feature = "slice_flatten", since = "1.80.0")]
3125    pub fn into_flattened(self) -> Vec<T, A> {
3126        let (ptr, len, cap, alloc) = self.into_raw_parts_with_alloc();
3127        let (new_len, new_cap) = if T::IS_ZST {
3128            (len.checked_mul(N).expect("vec len overflow"), usize::MAX)
3129        } else {
3130            // SAFETY:
3131            // - `cap * N` cannot overflow because the allocation is already in
3132            // the address space.
3133            // - Each `[T; N]` has `N` valid elements, so there are `len * N`
3134            // valid elements in the allocation.
3135            unsafe { (len.unchecked_mul(N), cap.unchecked_mul(N)) }
3136        };
3137        // SAFETY:
3138        // - `ptr` was allocated by `self`
3139        // - `ptr` is well-aligned because `[T; N]` has the same alignment as `T`.
3140        // - `new_cap` refers to the same sized allocation as `cap` because
3141        // `new_cap * size_of::<T>()` == `cap * size_of::<[T; N]>()`
3142        // - `len` <= `cap`, so `len * N` <= `cap * N`.
3143        unsafe { Vec::<T, A>::from_raw_parts_in(ptr.cast(), new_len, new_cap, alloc) }
3144    }
3145}
3146
3147impl<T: Clone, A: Allocator> Vec<T, A> {
3148    #[cfg(not(no_global_oom_handling))]
3149    #[track_caller]
3150    /// Extend the vector by `n` clones of value.
3151    fn extend_with(&mut self, n: usize, value: T) {
3152        self.reserve(n);
3153
3154        unsafe {
3155            let mut ptr = self.as_mut_ptr().add(self.len());
3156            // Use SetLenOnDrop to work around bug where compiler
3157            // might not realize the store through `ptr` through self.set_len()
3158            // don't alias.
3159            let mut local_len = SetLenOnDrop::new(&mut self.len);
3160
3161            // Write all elements except the last one
3162            for _ in 1..n {
3163                ptr::write(ptr, value.clone());
3164                ptr = ptr.add(1);
3165                // Increment the length in every step in case clone() panics
3166                local_len.increment_len(1);
3167            }
3168
3169            if n > 0 {
3170                // We can write the last element directly without cloning needlessly
3171                ptr::write(ptr, value);
3172                local_len.increment_len(1);
3173            }
3174
3175            // len set by scope guard
3176        }
3177    }
3178}
3179
3180impl<T: PartialEq, A: Allocator> Vec<T, A> {
3181    /// Removes consecutive repeated elements in the vector according to the
3182    /// [`PartialEq`] trait implementation.
3183    ///
3184    /// If the vector is sorted, this removes all duplicates.
3185    ///
3186    /// # Examples
3187    ///
3188    /// ```
3189    /// let mut vec = vec![1, 2, 2, 3, 2];
3190    ///
3191    /// vec.dedup();
3192    ///
3193    /// assert_eq!(vec, [1, 2, 3, 2]);
3194    /// ```
3195    #[stable(feature = "rust1", since = "1.0.0")]
3196    #[inline]
3197    pub fn dedup(&mut self) {
3198        self.dedup_by(|a, b| a == b)
3199    }
3200}
3201
3202////////////////////////////////////////////////////////////////////////////////
3203// Internal methods and functions
3204////////////////////////////////////////////////////////////////////////////////
3205
3206#[doc(hidden)]
3207#[cfg(not(no_global_oom_handling))]
3208#[stable(feature = "rust1", since = "1.0.0")]
3209#[rustc_diagnostic_item = "vec_from_elem"]
3210#[track_caller]
3211pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> {
3212    <T as SpecFromElem>::from_elem(elem, n, Global)
3213}
3214
3215#[doc(hidden)]
3216#[cfg(not(no_global_oom_handling))]
3217#[unstable(feature = "allocator_api", issue = "32838")]
3218#[track_caller]
3219pub fn from_elem_in<T: Clone, A: Allocator>(elem: T, n: usize, alloc: A) -> Vec<T, A> {
3220    <T as SpecFromElem>::from_elem(elem, n, alloc)
3221}
3222
3223#[cfg(not(no_global_oom_handling))]
3224trait ExtendFromWithinSpec {
3225    /// # Safety
3226    ///
3227    /// - `src` needs to be valid index
3228    /// - `self.capacity() - self.len()` must be `>= src.len()`
3229    unsafe fn spec_extend_from_within(&mut self, src: Range<usize>);
3230}
3231
3232#[cfg(not(no_global_oom_handling))]
3233impl<T: Clone, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
3234    default unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
3235        // SAFETY:
3236        // - len is increased only after initializing elements
3237        let (this, spare, len) = unsafe { self.split_at_spare_mut_with_len() };
3238
3239        // SAFETY:
3240        // - caller guarantees that src is a valid index
3241        let to_clone = unsafe { this.get_unchecked(src) };
3242
3243        iter::zip(to_clone, spare)
3244            .map(|(src, dst)| dst.write(src.clone()))
3245            // Note:
3246            // - Element was just initialized with `MaybeUninit::write`, so it's ok to increase len
3247            // - len is increased after each element to prevent leaks (see issue #82533)
3248            .for_each(|_| *len += 1);
3249    }
3250}
3251
3252#[cfg(not(no_global_oom_handling))]
3253impl<T: Copy, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
3254    unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
3255        let count = src.len();
3256        {
3257            let (init, spare) = self.split_at_spare_mut();
3258
3259            // SAFETY:
3260            // - caller guarantees that `src` is a valid index
3261            let source = unsafe { init.get_unchecked(src) };
3262
3263            // SAFETY:
3264            // - Both pointers are created from unique slice references (`&mut [_]`)
3265            //   so they are valid and do not overlap.
3266            // - Elements are :Copy so it's OK to copy them, without doing
3267            //   anything with the original values
3268            // - `count` is equal to the len of `source`, so source is valid for
3269            //   `count` reads
3270            // - `.reserve(count)` guarantees that `spare.len() >= count` so spare
3271            //   is valid for `count` writes
3272            unsafe { ptr::copy_nonoverlapping(source.as_ptr(), spare.as_mut_ptr() as _, count) };
3273        }
3274
3275        // SAFETY:
3276        // - The elements were just initialized by `copy_nonoverlapping`
3277        self.len += count;
3278    }
3279}
3280
3281////////////////////////////////////////////////////////////////////////////////
3282// Common trait implementations for Vec
3283////////////////////////////////////////////////////////////////////////////////
3284
3285#[stable(feature = "rust1", since = "1.0.0")]
3286impl<T, A: Allocator> ops::Deref for Vec<T, A> {
3287    type Target = [T];
3288
3289    #[inline]
3290    fn deref(&self) -> &[T] {
3291        self.as_slice()
3292    }
3293}
3294
3295#[stable(feature = "rust1", since = "1.0.0")]
3296impl<T, A: Allocator> ops::DerefMut for Vec<T, A> {
3297    #[inline]
3298    fn deref_mut(&mut self) -> &mut [T] {
3299        self.as_mut_slice()
3300    }
3301}
3302
3303#[unstable(feature = "deref_pure_trait", issue = "87121")]
3304unsafe impl<T, A: Allocator> ops::DerefPure for Vec<T, A> {}
3305
3306#[cfg(not(no_global_oom_handling))]
3307#[stable(feature = "rust1", since = "1.0.0")]
3308impl<T: Clone, A: Allocator + Clone> Clone for Vec<T, A> {
3309    #[track_caller]
3310    fn clone(&self) -> Self {
3311        let alloc = self.allocator().clone();
3312        <[T]>::to_vec_in(&**self, alloc)
3313    }
3314
3315    /// Overwrites the contents of `self` with a clone of the contents of `source`.
3316    ///
3317    /// This method is preferred over simply assigning `source.clone()` to `self`,
3318    /// as it avoids reallocation if possible. Additionally, if the element type
3319    /// `T` overrides `clone_from()`, this will reuse the resources of `self`'s
3320    /// elements as well.
3321    ///
3322    /// # Examples
3323    ///
3324    /// ```
3325    /// let x = vec![5, 6, 7];
3326    /// let mut y = vec![8, 9, 10];
3327    /// let yp: *const i32 = y.as_ptr();
3328    ///
3329    /// y.clone_from(&x);
3330    ///
3331    /// // The value is the same
3332    /// assert_eq!(x, y);
3333    ///
3334    /// // And no reallocation occurred
3335    /// assert_eq!(yp, y.as_ptr());
3336    /// ```
3337    #[track_caller]
3338    fn clone_from(&mut self, source: &Self) {
3339        crate::slice::SpecCloneIntoVec::clone_into(source.as_slice(), self);
3340    }
3341}
3342
3343/// The hash of a vector is the same as that of the corresponding slice,
3344/// as required by the `core::borrow::Borrow` implementation.
3345///
3346/// ```
3347/// use std::hash::BuildHasher;
3348///
3349/// let b = std::hash::RandomState::new();
3350/// let v: Vec<u8> = vec![0xa8, 0x3c, 0x09];
3351/// let s: &[u8] = &[0xa8, 0x3c, 0x09];
3352/// assert_eq!(b.hash_one(v), b.hash_one(s));
3353/// ```
3354#[stable(feature = "rust1", since = "1.0.0")]
3355impl<T: Hash, A: Allocator> Hash for Vec<T, A> {
3356    #[inline]
3357    fn hash<H: Hasher>(&self, state: &mut H) {
3358        Hash::hash(&**self, state)
3359    }
3360}
3361
3362#[stable(feature = "rust1", since = "1.0.0")]
3363impl<T, I: SliceIndex<[T]>, A: Allocator> Index<I> for Vec<T, A> {
3364    type Output = I::Output;
3365
3366    #[inline]
3367    fn index(&self, index: I) -> &Self::Output {
3368        Index::index(&**self, index)
3369    }
3370}
3371
3372#[stable(feature = "rust1", since = "1.0.0")]
3373impl<T, I: SliceIndex<[T]>, A: Allocator> IndexMut<I> for Vec<T, A> {
3374    #[inline]
3375    fn index_mut(&mut self, index: I) -> &mut Self::Output {
3376        IndexMut::index_mut(&mut **self, index)
3377    }
3378}
3379
3380/// Collects an iterator into a Vec, commonly called via [`Iterator::collect()`]
3381///
3382/// # Allocation behavior
3383///
3384/// In general `Vec` does not guarantee any particular growth or allocation strategy.
3385/// That also applies to this trait impl.
3386///
3387/// **Note:** This section covers implementation details and is therefore exempt from
3388/// stability guarantees.
3389///
3390/// Vec may use any or none of the following strategies,
3391/// depending on the supplied iterator:
3392///
3393/// * preallocate based on [`Iterator::size_hint()`]
3394///   * and panic if the number of items is outside the provided lower/upper bounds
3395/// * use an amortized growth strategy similar to `pushing` one item at a time
3396/// * perform the iteration in-place on the original allocation backing the iterator
3397///
3398/// The last case warrants some attention. It is an optimization that in many cases reduces peak memory
3399/// consumption and improves cache locality. But when big, short-lived allocations are created,
3400/// only a small fraction of their items get collected, no further use is made of the spare capacity
3401/// and the resulting `Vec` is moved into a longer-lived structure, then this can lead to the large
3402/// allocations having their lifetimes unnecessarily extended which can result in increased memory
3403/// footprint.
3404///
3405/// In cases where this is an issue, the excess capacity can be discarded with [`Vec::shrink_to()`],
3406/// [`Vec::shrink_to_fit()`] or by collecting into [`Box<[T]>`][owned slice] instead, which additionally reduces
3407/// the size of the long-lived struct.
3408///
3409/// [owned slice]: Box
3410///
3411/// ```rust
3412/// # use std::sync::Mutex;
3413/// static LONG_LIVED: Mutex<Vec<Vec<u16>>> = Mutex::new(Vec::new());
3414///
3415/// for i in 0..10 {
3416///     let big_temporary: Vec<u16> = (0..1024).collect();
3417///     // discard most items
3418///     let mut result: Vec<_> = big_temporary.into_iter().filter(|i| i % 100 == 0).collect();
3419///     // without this a lot of unused capacity might be moved into the global
3420///     result.shrink_to_fit();
3421///     LONG_LIVED.lock().unwrap().push(result);
3422/// }
3423/// ```
3424#[cfg(not(no_global_oom_handling))]
3425#[stable(feature = "rust1", since = "1.0.0")]
3426impl<T> FromIterator<T> for Vec<T> {
3427    #[inline]
3428    #[track_caller]
3429    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> {
3430        <Self as SpecFromIter<T, I::IntoIter>>::from_iter(iter.into_iter())
3431    }
3432}
3433
3434#[stable(feature = "rust1", since = "1.0.0")]
3435impl<T, A: Allocator> IntoIterator for Vec<T, A> {
3436    type Item = T;
3437    type IntoIter = IntoIter<T, A>;
3438
3439    /// Creates a consuming iterator, that is, one that moves each value out of
3440    /// the vector (from start to end). The vector cannot be used after calling
3441    /// this.
3442    ///
3443    /// # Examples
3444    ///
3445    /// ```
3446    /// let v = vec!["a".to_string(), "b".to_string()];
3447    /// let mut v_iter = v.into_iter();
3448    ///
3449    /// let first_element: Option<String> = v_iter.next();
3450    ///
3451    /// assert_eq!(first_element, Some("a".to_string()));
3452    /// assert_eq!(v_iter.next(), Some("b".to_string()));
3453    /// assert_eq!(v_iter.next(), None);
3454    /// ```
3455    #[inline]
3456    fn into_iter(self) -> Self::IntoIter {
3457        unsafe {
3458            let me = ManuallyDrop::new(self);
3459            let alloc = ManuallyDrop::new(ptr::read(me.allocator()));
3460            let buf = me.buf.non_null();
3461            let begin = buf.as_ptr();
3462            let end = if T::IS_ZST {
3463                begin.wrapping_byte_add(me.len())
3464            } else {
3465                begin.add(me.len()) as *const T
3466            };
3467            let cap = me.buf.capacity();
3468            IntoIter { buf, phantom: PhantomData, cap, alloc, ptr: buf, end }
3469        }
3470    }
3471}
3472
3473#[stable(feature = "rust1", since = "1.0.0")]
3474impl<'a, T, A: Allocator> IntoIterator for &'a Vec<T, A> {
3475    type Item = &'a T;
3476    type IntoIter = slice::Iter<'a, T>;
3477
3478    fn into_iter(self) -> Self::IntoIter {
3479        self.iter()
3480    }
3481}
3482
3483#[stable(feature = "rust1", since = "1.0.0")]
3484impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A> {
3485    type Item = &'a mut T;
3486    type IntoIter = slice::IterMut<'a, T>;
3487
3488    fn into_iter(self) -> Self::IntoIter {
3489        self.iter_mut()
3490    }
3491}
3492
3493#[cfg(not(no_global_oom_handling))]
3494#[stable(feature = "rust1", since = "1.0.0")]
3495impl<T, A: Allocator> Extend<T> for Vec<T, A> {
3496    #[inline]
3497    #[track_caller]
3498    fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
3499        <Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter())
3500    }
3501
3502    #[inline]
3503    #[track_caller]
3504    fn extend_one(&mut self, item: T) {
3505        self.push(item);
3506    }
3507
3508    #[inline]
3509    #[track_caller]
3510    fn extend_reserve(&mut self, additional: usize) {
3511        self.reserve(additional);
3512    }
3513
3514    #[inline]
3515    unsafe fn extend_one_unchecked(&mut self, item: T) {
3516        // SAFETY: Our preconditions ensure the space has been reserved, and `extend_reserve` is implemented correctly.
3517        unsafe {
3518            let len = self.len();
3519            ptr::write(self.as_mut_ptr().add(len), item);
3520            self.set_len(len + 1);
3521        }
3522    }
3523}
3524
3525impl<T, A: Allocator> Vec<T, A> {
3526    // leaf method to which various SpecFrom/SpecExtend implementations delegate when
3527    // they have no further optimizations to apply
3528    #[cfg(not(no_global_oom_handling))]
3529    #[track_caller]
3530    fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) {
3531        // This is the case for a general iterator.
3532        //
3533        // This function should be the moral equivalent of:
3534        //
3535        //      for item in iterator {
3536        //          self.push(item);
3537        //      }
3538        while let Some(element) = iterator.next() {
3539            let len = self.len();
3540            if len == self.capacity() {
3541                let (lower, _) = iterator.size_hint();
3542                self.reserve(lower.saturating_add(1));
3543            }
3544            unsafe {
3545                ptr::write(self.as_mut_ptr().add(len), element);
3546                // Since next() executes user code which can panic we have to bump the length
3547                // after each step.
3548                // NB can't overflow since we would have had to alloc the address space
3549                self.set_len(len + 1);
3550            }
3551        }
3552    }
3553
3554    // specific extend for `TrustedLen` iterators, called both by the specializations
3555    // and internal places where resolving specialization makes compilation slower
3556    #[cfg(not(no_global_oom_handling))]
3557    #[track_caller]
3558    fn extend_trusted(&mut self, iterator: impl iter::TrustedLen<Item = T>) {
3559        let (low, high) = iterator.size_hint();
3560        if let Some(additional) = high {
3561            debug_assert_eq!(
3562                low,
3563                additional,
3564                "TrustedLen iterator's size hint is not exact: {:?}",
3565                (low, high)
3566            );
3567            self.reserve(additional);
3568            unsafe {
3569                let ptr = self.as_mut_ptr();
3570                let mut local_len = SetLenOnDrop::new(&mut self.len);
3571                iterator.for_each(move |element| {
3572                    ptr::write(ptr.add(local_len.current_len()), element);
3573                    // Since the loop executes user code which can panic we have to update
3574                    // the length every step to correctly drop what we've written.
3575                    // NB can't overflow since we would have had to alloc the address space
3576                    local_len.increment_len(1);
3577                });
3578            }
3579        } else {
3580            // Per TrustedLen contract a `None` upper bound means that the iterator length
3581            // truly exceeds usize::MAX, which would eventually lead to a capacity overflow anyway.
3582            // Since the other branch already panics eagerly (via `reserve()`) we do the same here.
3583            // This avoids additional codegen for a fallback code path which would eventually
3584            // panic anyway.
3585            panic!("capacity overflow");
3586        }
3587    }
3588
3589    /// Creates a splicing iterator that replaces the specified range in the vector
3590    /// with the given `replace_with` iterator and yields the removed items.
3591    /// `replace_with` does not need to be the same length as `range`.
3592    ///
3593    /// `range` is removed even if the `Splice` iterator is not consumed before it is dropped.
3594    ///
3595    /// It is unspecified how many elements are removed from the vector
3596    /// if the `Splice` value is leaked.
3597    ///
3598    /// The input iterator `replace_with` is only consumed when the `Splice` value is dropped.
3599    ///
3600    /// This is optimal if:
3601    ///
3602    /// * The tail (elements in the vector after `range`) is empty,
3603    /// * or `replace_with` yields fewer or equal elements than `range`’s length
3604    /// * or the lower bound of its `size_hint()` is exact.
3605    ///
3606    /// Otherwise, a temporary vector is allocated and the tail is moved twice.
3607    ///
3608    /// # Panics
3609    ///
3610    /// Panics if the starting point is greater than the end point or if
3611    /// the end point is greater than the length of the vector.
3612    ///
3613    /// # Examples
3614    ///
3615    /// ```
3616    /// let mut v = vec![1, 2, 3, 4];
3617    /// let new = [7, 8, 9];
3618    /// let u: Vec<_> = v.splice(1..3, new).collect();
3619    /// assert_eq!(v, [1, 7, 8, 9, 4]);
3620    /// assert_eq!(u, [2, 3]);
3621    /// ```
3622    ///
3623    /// Using `splice` to insert new items into a vector efficiently at a specific position
3624    /// indicated by an empty range:
3625    ///
3626    /// ```
3627    /// let mut v = vec![1, 5];
3628    /// let new = [2, 3, 4];
3629    /// v.splice(1..1, new);
3630    /// assert_eq!(v, [1, 2, 3, 4, 5]);
3631    /// ```
3632    #[cfg(not(no_global_oom_handling))]
3633    #[inline]
3634    #[stable(feature = "vec_splice", since = "1.21.0")]
3635    pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A>
3636    where
3637        R: RangeBounds<usize>,
3638        I: IntoIterator<Item = T>,
3639    {
3640        Splice { drain: self.drain(range), replace_with: replace_with.into_iter() }
3641    }
3642
3643    /// Creates an iterator which uses a closure to determine if element in the range should be removed.
3644    ///
3645    /// If the closure returns true, then the element is removed and yielded.
3646    /// If the closure returns false, the element will remain in the vector and will not be yielded
3647    /// by the iterator.
3648    ///
3649    /// Only elements that fall in the provided range are considered for extraction, but any elements
3650    /// after the range will still have to be moved if any element has been extracted.
3651    ///
3652    /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
3653    /// or the iteration short-circuits, then the remaining elements will be retained.
3654    /// Use [`retain`] with a negated predicate if you do not need the returned iterator.
3655    ///
3656    /// [`retain`]: Vec::retain
3657    ///
3658    /// Using this method is equivalent to the following code:
3659    ///
3660    /// ```
3661    /// # use std::cmp::min;
3662    /// # let some_predicate = |x: &mut i32| { *x == 2 || *x == 3 || *x == 6 };
3663    /// # let mut vec = vec![1, 2, 3, 4, 5, 6];
3664    /// # let range = 1..4;
3665    /// let mut i = range.start;
3666    /// while i < min(vec.len(), range.end) {
3667    ///     if some_predicate(&mut vec[i]) {
3668    ///         let val = vec.remove(i);
3669    ///         // your code here
3670    ///     } else {
3671    ///         i += 1;
3672    ///     }
3673    /// }
3674    ///
3675    /// # assert_eq!(vec, vec![1, 4, 5]);
3676    /// ```
3677    ///
3678    /// But `extract_if` is easier to use. `extract_if` is also more efficient,
3679    /// because it can backshift the elements of the array in bulk.
3680    ///
3681    /// Note that `extract_if` also lets you mutate the elements passed to the filter closure,
3682    /// regardless of whether you choose to keep or remove them.
3683    ///
3684    /// # Panics
3685    ///
3686    /// If `range` is out of bounds.
3687    ///
3688    /// # Examples
3689    ///
3690    /// Splitting an array into evens and odds, reusing the original allocation:
3691    ///
3692    /// ```
3693    /// let mut numbers = vec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15];
3694    ///
3695    /// let evens = numbers.extract_if(.., |x| *x % 2 == 0).collect::<Vec<_>>();
3696    /// let odds = numbers;
3697    ///
3698    /// assert_eq!(evens, vec![2, 4, 6, 8, 14]);
3699    /// assert_eq!(odds, vec![1, 3, 5, 9, 11, 13, 15]);
3700    /// ```
3701    ///
3702    /// Using the range argument to only process a part of the vector:
3703    ///
3704    /// ```
3705    /// let mut items = vec![0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 2, 1, 2];
3706    /// let ones = items.extract_if(7.., |x| *x == 1).collect::<Vec<_>>();
3707    /// assert_eq!(items, vec![0, 0, 0, 0, 0, 0, 0, 2, 2, 2]);
3708    /// assert_eq!(ones.len(), 3);
3709    /// ```
3710    #[stable(feature = "extract_if", since = "CURRENT_RUSTC_VERSION")]
3711    pub fn extract_if<F, R>(&mut self, range: R, filter: F) -> ExtractIf<'_, T, F, A>
3712    where
3713        F: FnMut(&mut T) -> bool,
3714        R: RangeBounds<usize>,
3715    {
3716        ExtractIf::new(self, filter, range)
3717    }
3718}
3719
3720/// Extend implementation that copies elements out of references before pushing them onto the Vec.
3721///
3722/// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to
3723/// append the entire slice at once.
3724///
3725/// [`copy_from_slice`]: slice::copy_from_slice
3726#[cfg(not(no_global_oom_handling))]
3727#[stable(feature = "extend_ref", since = "1.2.0")]
3728impl<'a, T: Copy + 'a, A: Allocator> Extend<&'a T> for Vec<T, A> {
3729    #[track_caller]
3730    fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
3731        self.spec_extend(iter.into_iter())
3732    }
3733
3734    #[inline]
3735    #[track_caller]
3736    fn extend_one(&mut self, &item: &'a T) {
3737        self.push(item);
3738    }
3739
3740    #[inline]
3741    #[track_caller]
3742    fn extend_reserve(&mut self, additional: usize) {
3743        self.reserve(additional);
3744    }
3745
3746    #[inline]
3747    unsafe fn extend_one_unchecked(&mut self, &item: &'a T) {
3748        // SAFETY: Our preconditions ensure the space has been reserved, and `extend_reserve` is implemented correctly.
3749        unsafe {
3750            let len = self.len();
3751            ptr::write(self.as_mut_ptr().add(len), item);
3752            self.set_len(len + 1);
3753        }
3754    }
3755}
3756
3757/// Implements comparison of vectors, [lexicographically](Ord#lexicographical-comparison).
3758#[stable(feature = "rust1", since = "1.0.0")]
3759impl<T, A1, A2> PartialOrd<Vec<T, A2>> for Vec<T, A1>
3760where
3761    T: PartialOrd,
3762    A1: Allocator,
3763    A2: Allocator,
3764{
3765    #[inline]
3766    fn partial_cmp(&self, other: &Vec<T, A2>) -> Option<Ordering> {
3767        PartialOrd::partial_cmp(&**self, &**other)
3768    }
3769}
3770
3771#[stable(feature = "rust1", since = "1.0.0")]
3772impl<T: Eq, A: Allocator> Eq for Vec<T, A> {}
3773
3774/// Implements ordering of vectors, [lexicographically](Ord#lexicographical-comparison).
3775#[stable(feature = "rust1", since = "1.0.0")]
3776impl<T: Ord, A: Allocator> Ord for Vec<T, A> {
3777    #[inline]
3778    fn cmp(&self, other: &Self) -> Ordering {
3779        Ord::cmp(&**self, &**other)
3780    }
3781}
3782
3783#[stable(feature = "rust1", since = "1.0.0")]
3784unsafe impl<#[may_dangle] T, A: Allocator> Drop for Vec<T, A> {
3785    fn drop(&mut self) {
3786        unsafe {
3787            // use drop for [T]
3788            // use a raw slice to refer to the elements of the vector as weakest necessary type;
3789            // could avoid questions of validity in certain cases
3790            ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.as_mut_ptr(), self.len))
3791        }
3792        // RawVec handles deallocation
3793    }
3794}
3795
3796#[stable(feature = "rust1", since = "1.0.0")]
3797impl<T> Default for Vec<T> {
3798    /// Creates an empty `Vec<T>`.
3799    ///
3800    /// The vector will not allocate until elements are pushed onto it.
3801    fn default() -> Vec<T> {
3802        Vec::new()
3803    }
3804}
3805
3806#[stable(feature = "rust1", since = "1.0.0")]
3807impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
3808    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3809        fmt::Debug::fmt(&**self, f)
3810    }
3811}
3812
3813#[stable(feature = "rust1", since = "1.0.0")]
3814impl<T, A: Allocator> AsRef<Vec<T, A>> for Vec<T, A> {
3815    fn as_ref(&self) -> &Vec<T, A> {
3816        self
3817    }
3818}
3819
3820#[stable(feature = "vec_as_mut", since = "1.5.0")]
3821impl<T, A: Allocator> AsMut<Vec<T, A>> for Vec<T, A> {
3822    fn as_mut(&mut self) -> &mut Vec<T, A> {
3823        self
3824    }
3825}
3826
3827#[stable(feature = "rust1", since = "1.0.0")]
3828impl<T, A: Allocator> AsRef<[T]> for Vec<T, A> {
3829    fn as_ref(&self) -> &[T] {
3830        self
3831    }
3832}
3833
3834#[stable(feature = "vec_as_mut", since = "1.5.0")]
3835impl<T, A: Allocator> AsMut<[T]> for Vec<T, A> {
3836    fn as_mut(&mut self) -> &mut [T] {
3837        self
3838    }
3839}
3840
3841#[cfg(not(no_global_oom_handling))]
3842#[stable(feature = "rust1", since = "1.0.0")]
3843impl<T: Clone> From<&[T]> for Vec<T> {
3844    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
3845    ///
3846    /// # Examples
3847    ///
3848    /// ```
3849    /// assert_eq!(Vec::from(&[1, 2, 3][..]), vec![1, 2, 3]);
3850    /// ```
3851    #[track_caller]
3852    fn from(s: &[T]) -> Vec<T> {
3853        s.to_vec()
3854    }
3855}
3856
3857#[cfg(not(no_global_oom_handling))]
3858#[stable(feature = "vec_from_mut", since = "1.19.0")]
3859impl<T: Clone> From<&mut [T]> for Vec<T> {
3860    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
3861    ///
3862    /// # Examples
3863    ///
3864    /// ```
3865    /// assert_eq!(Vec::from(&mut [1, 2, 3][..]), vec![1, 2, 3]);
3866    /// ```
3867    #[track_caller]
3868    fn from(s: &mut [T]) -> Vec<T> {
3869        s.to_vec()
3870    }
3871}
3872
3873#[cfg(not(no_global_oom_handling))]
3874#[stable(feature = "vec_from_array_ref", since = "1.74.0")]
3875impl<T: Clone, const N: usize> From<&[T; N]> for Vec<T> {
3876    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
3877    ///
3878    /// # Examples
3879    ///
3880    /// ```
3881    /// assert_eq!(Vec::from(&[1, 2, 3]), vec![1, 2, 3]);
3882    /// ```
3883    #[track_caller]
3884    fn from(s: &[T; N]) -> Vec<T> {
3885        Self::from(s.as_slice())
3886    }
3887}
3888
3889#[cfg(not(no_global_oom_handling))]
3890#[stable(feature = "vec_from_array_ref", since = "1.74.0")]
3891impl<T: Clone, const N: usize> From<&mut [T; N]> for Vec<T> {
3892    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
3893    ///
3894    /// # Examples
3895    ///
3896    /// ```
3897    /// assert_eq!(Vec::from(&mut [1, 2, 3]), vec![1, 2, 3]);
3898    /// ```
3899    #[track_caller]
3900    fn from(s: &mut [T; N]) -> Vec<T> {
3901        Self::from(s.as_mut_slice())
3902    }
3903}
3904
3905#[cfg(not(no_global_oom_handling))]
3906#[stable(feature = "vec_from_array", since = "1.44.0")]
3907impl<T, const N: usize> From<[T; N]> for Vec<T> {
3908    /// Allocates a `Vec<T>` and moves `s`'s items into it.
3909    ///
3910    /// # Examples
3911    ///
3912    /// ```
3913    /// assert_eq!(Vec::from([1, 2, 3]), vec![1, 2, 3]);
3914    /// ```
3915    #[track_caller]
3916    fn from(s: [T; N]) -> Vec<T> {
3917        <[T]>::into_vec(Box::new(s))
3918    }
3919}
3920
3921#[stable(feature = "vec_from_cow_slice", since = "1.14.0")]
3922impl<'a, T> From<Cow<'a, [T]>> for Vec<T>
3923where
3924    [T]: ToOwned<Owned = Vec<T>>,
3925{
3926    /// Converts a clone-on-write slice into a vector.
3927    ///
3928    /// If `s` already owns a `Vec<T>`, it will be returned directly.
3929    /// If `s` is borrowing a slice, a new `Vec<T>` will be allocated and
3930    /// filled by cloning `s`'s items into it.
3931    ///
3932    /// # Examples
3933    ///
3934    /// ```
3935    /// # use std::borrow::Cow;
3936    /// let o: Cow<'_, [i32]> = Cow::Owned(vec![1, 2, 3]);
3937    /// let b: Cow<'_, [i32]> = Cow::Borrowed(&[1, 2, 3]);
3938    /// assert_eq!(Vec::from(o), Vec::from(b));
3939    /// ```
3940    #[track_caller]
3941    fn from(s: Cow<'a, [T]>) -> Vec<T> {
3942        s.into_owned()
3943    }
3944}
3945
3946// note: test pulls in std, which causes errors here
3947#[stable(feature = "vec_from_box", since = "1.18.0")]
3948impl<T, A: Allocator> From<Box<[T], A>> for Vec<T, A> {
3949    /// Converts a boxed slice into a vector by transferring ownership of
3950    /// the existing heap allocation.
3951    ///
3952    /// # Examples
3953    ///
3954    /// ```
3955    /// let b: Box<[i32]> = vec![1, 2, 3].into_boxed_slice();
3956    /// assert_eq!(Vec::from(b), vec![1, 2, 3]);
3957    /// ```
3958    fn from(s: Box<[T], A>) -> Self {
3959        s.into_vec()
3960    }
3961}
3962
3963// note: test pulls in std, which causes errors here
3964#[cfg(not(no_global_oom_handling))]
3965#[stable(feature = "box_from_vec", since = "1.20.0")]
3966impl<T, A: Allocator> From<Vec<T, A>> for Box<[T], A> {
3967    /// Converts a vector into a boxed slice.
3968    ///
3969    /// Before doing the conversion, this method discards excess capacity like [`Vec::shrink_to_fit`].
3970    ///
3971    /// [owned slice]: Box
3972    /// [`Vec::shrink_to_fit`]: Vec::shrink_to_fit
3973    ///
3974    /// # Examples
3975    ///
3976    /// ```
3977    /// assert_eq!(Box::from(vec![1, 2, 3]), vec![1, 2, 3].into_boxed_slice());
3978    /// ```
3979    ///
3980    /// Any excess capacity is removed:
3981    /// ```
3982    /// let mut vec = Vec::with_capacity(10);
3983    /// vec.extend([1, 2, 3]);
3984    ///
3985    /// assert_eq!(Box::from(vec), vec![1, 2, 3].into_boxed_slice());
3986    /// ```
3987    #[track_caller]
3988    fn from(v: Vec<T, A>) -> Self {
3989        v.into_boxed_slice()
3990    }
3991}
3992
3993#[cfg(not(no_global_oom_handling))]
3994#[stable(feature = "rust1", since = "1.0.0")]
3995impl From<&str> for Vec<u8> {
3996    /// Allocates a `Vec<u8>` and fills it with a UTF-8 string.
3997    ///
3998    /// # Examples
3999    ///
4000    /// ```
4001    /// assert_eq!(Vec::from("123"), vec![b'1', b'2', b'3']);
4002    /// ```
4003    #[track_caller]
4004    fn from(s: &str) -> Vec<u8> {
4005        From::from(s.as_bytes())
4006    }
4007}
4008
4009#[stable(feature = "array_try_from_vec", since = "1.48.0")]
4010impl<T, A: Allocator, const N: usize> TryFrom<Vec<T, A>> for [T; N] {
4011    type Error = Vec<T, A>;
4012
4013    /// Gets the entire contents of the `Vec<T>` as an array,
4014    /// if its size exactly matches that of the requested array.
4015    ///
4016    /// # Examples
4017    ///
4018    /// ```
4019    /// assert_eq!(vec![1, 2, 3].try_into(), Ok([1, 2, 3]));
4020    /// assert_eq!(<Vec<i32>>::new().try_into(), Ok([]));
4021    /// ```
4022    ///
4023    /// If the length doesn't match, the input comes back in `Err`:
4024    /// ```
4025    /// let r: Result<[i32; 4], _> = (0..10).collect::<Vec<_>>().try_into();
4026    /// assert_eq!(r, Err(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]));
4027    /// ```
4028    ///
4029    /// If you're fine with just getting a prefix of the `Vec<T>`,
4030    /// you can call [`.truncate(N)`](Vec::truncate) first.
4031    /// ```
4032    /// let mut v = String::from("hello world").into_bytes();
4033    /// v.sort();
4034    /// v.truncate(2);
4035    /// let [a, b]: [_; 2] = v.try_into().unwrap();
4036    /// assert_eq!(a, b' ');
4037    /// assert_eq!(b, b'd');
4038    /// ```
4039    fn try_from(mut vec: Vec<T, A>) -> Result<[T; N], Vec<T, A>> {
4040        if vec.len() != N {
4041            return Err(vec);
4042        }
4043
4044        // SAFETY: `.set_len(0)` is always sound.
4045        unsafe { vec.set_len(0) };
4046
4047        // SAFETY: A `Vec`'s pointer is always aligned properly, and
4048        // the alignment the array needs is the same as the items.
4049        // We checked earlier that we have sufficient items.
4050        // The items will not double-drop as the `set_len`
4051        // tells the `Vec` not to also drop them.
4052        let array = unsafe { ptr::read(vec.as_ptr() as *const [T; N]) };
4053        Ok(array)
4054    }
4055}