2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM ), 2019
The ability to perform robotic arm motion planning is a necessity in the design of autonomous and... more The ability to perform robotic arm motion planning is a necessity in the design of autonomous and intelligent robotic systems. Motion planning allows the autonomous robotic arm to maneuver its end-effector in an unstructured environment whilst avoiding obstacles on the workspace. This ability is particularly important in processes with pick-and-place operations and varying object positions. In this study, a genetic algorithm-based motion planning for a 4-DOF robotic arm was developed. The developed genetic algorithm operates on a variable-length genome that consists of changes in joint angles. These changes in joint angles represent the end-effector’s move sequence. The results show that adaptive linear interpolation crossover (ALIX) improves the convergence of the motion path towards minimization of end-effector error and path length. On average, the end-effector error is 1.4 mm with a maximum path length deviation from a straight line of about 50.4 mm tested on extreme target poin...
Uploads
Papers by Alexander Abad