Papers by Joeri van Engelen

The Nile Delta is essential to Egypt's agro-and socio-economy. Although surface water is the trad... more The Nile Delta is essential to Egypt's agro-and socio-economy. Although surface water is the traditional source for Egypt's irrigation, the shallow fresh groundwater resources underlying the delta are increasingly burdened by groundwater pumping, which increases interest in the status of the groundwater resources. Groundwater up to three times more saline than sea water was found at 600 m depth. The occurrence of this hypersaline groundwater raises doubts on the often-made assumption in the literature that seawater is the only source of salt in the Nile Delta aquifer and makes further investigation necessary. Knowledge on the origin of this hypersaline groundwater is key in assessing the possibility of deep fresh groundwater pockets. In this paper we conducted computational analyses to assess possible origins using both analytical solutions and numerical models. It is concluded that the hypersaline groundwater can either originate from Quaternary free convection systems, or from compaction-induced upward salt transport of hypersaline groundwater that formed during the Messinian salinity crisis. Our results also indicate that with groundwater dating it is possible to discriminate between these two hypotheses. Furthermore, it is deduced that the hydrological connection between aquifer and sea is crucial to the hydrogeological functioning of the Nile Delta Aquifer.

Hydrology and Earth System Sciences, 2019
Holocene marine transgressions are often put forward to explain observed groundwater salinities t... more Holocene marine transgressions are often put forward to explain observed groundwater salinities that extend far inland in deltas. This hypothesis was also proposed in the literature to explain the large land-inward extent of saline groundwater in the Nile Delta. The groundwater models previously built for the area used very large dispersivities to reconstruct this saline and brackish groundwater zone. However , this approach cannot explain the observed freshening of this zone. Here, we investigated the physical plausibility of the Holocene-transgression hypothesis to explain observed salinities by conducting a palaeohydrogeological reconstruction of groundwater salinity for the last 32 ka with a complex 3-D variable-density groundwater flow model, using a state-of-the-art version of the SEAWAT computer code that allows for parallel computation. Several scenarios with different lithologies and hypersaline groundwater provenances were simulated, of which five were selected that showed the best match with the observations. Amongst these selections, total freshwater volumes varied strongly, ranging from 1526 to 2659 km 3 , mainly due to uncertainties in the lithology offshore and at larger depths. This range is smaller (1511-1989 km 3) when we only consider the volumes of onshore fresh groundwater within 300 m depth. In all five selected scenarios the total volume of hypersaline groundwater exceeded that of seawater. We also show that during the last 32 ka, total freshwater volumes significantly declined, with a factor ranging from 2 to 5, due to the rising sea level. Furthermore , the time period required to reach a steady state under current boundary conditions exceeded 5.5 ka for all scenarios. Finally, under highly permeable conditions the marine transgression simulated with the palaeohydrogeological reconstruction led to a steeper fresh-salt interface compared to its steady-state equivalent, while low-permeable clay layers allowed for the preservation of fresh groundwater volumes. This shows that long-term transient simulations are needed when estimating present-day fresh-salt groundwater distributions in large deltas. The insights of this study are also applicable to other major deltaic areas, since many also experienced a Holocene marine transgression.
Uploads
Papers by Joeri van Engelen