


default search action
35th UAI 2019: Tel Aviv, Israel
- Amir Globerson, Ricardo Silva:

Proceedings of the Thirty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI 2019, Tel Aviv, Israel, July 22-25, 2019. Proceedings of Machine Learning Research 115, AUAI Press 2019 - Naman Goel, Boi Faltings:

Personalized Peer Truth Serum for Eliciting Multi-Attribute Personal Data. 18-27 - Zheng Wang, Shandian Zhe:

Conditional Expectation Propagation. 28-37 - Martin Slawski, Mostafa Rahmani, Ping Li:

A Sparse Representation-Based Approach to Linear Regression with Partially Shuffled Labels. 38-48 - Xingguo Li, Haoming Jiang, Jarvis D. Haupt, Raman Arora, Han Liu, Mingyi Hong, Tuo Zhao:

On Fast Convergence of Proximal Algorithms for SQRT-Lasso Optimization: Don't Worry About its Nonsmooth Loss Function. 49-59 - Tanvi Verma, Pradeep Varakantham:

Correlated Learning for Aggregation Systems. 60-70 - Patrick Forré, Joris M. Mooij:

Causal Calculus in the Presence of Cycles, Latent Confounders and Selection Bias. 71-80 - Ronald Ortner, Pratik Gajane, Peter Auer:

Variational Regret Bounds for Reinforcement Learning. 81-90 - Olivier Gouvert, Thomas Oberlin, Cédric Févotte:

Recommendation from Raw Data with Adaptive Compound Poisson Factorization. 91-101 - Hao Xiong, Yuanzhen Guo, Yibo Yang, Nicholas Ruozzi

:
One-Shot Inference in Markov Random Fields. 102-112 - Yuhui Wang, Hao He, Xiaoyang Tan:

Truly Proximal Policy Optimization. 113-122 - Craig Innes, Alex Lascarides:

Learning Factored Markov Decision Processes with Unawareness. 123-133 - Tim Pearce, Russell Tsuchida, Mohamed Zaki, Alexandra Brintrup, Andy Neely:

Expressive Priors in Bayesian Neural Networks: Kernel Combinations and Periodic Functions. 134-144 - Anand Avati, Tony Duan, Sharon Zhou, Kenneth Jung, Nigam H. Shah, Andrew Y. Ng:

Countdown Regression: Sharp and Calibrated Survival Predictions. 145-155 - Stefano Tracà, Weiyu Yan, Cynthia Rudin:

Reducing Exploration of Dying Arms in Mortal Bandits. 156-163 - Guojun Zhang, Pascal Poupart, George Trimponias:

Comparing EM with GD in Mixture Models of Two Components. 164-174 - Zhe Zeng, Guy Van den Broeck:

Efficient Search-Based Weighted Model Integration. 175-185 - Ricardo Pio Monti, Kun Zhang, Aapo Hyvärinen:

Causal Discovery with General Non-Linear Relationships using Non-Linear ICA. 186-195 - Chang Li, Branislav Kveton, Tor Lattimore, Ilya Markov, Maarten de Rijke, Csaba Szepesvári, Masrour Zoghi:

BubbleRank: Safe Online Learning to Re-Rank via Implicit Click Feedback. 196-206 - Philipp Geiger, Michel Besserve, Justus Winkelmann, Claudius Proissl, Bernhard Schölkopf:

Coordinating Users of Shared Facilities via Data-driven Predictive Assistants and Game Theory. 207-216 - Luigi Gresele, Paul K. Rubenstein, Arash Mehrjou, Francesco Locatello, Bernhard Schölkopf:

The Incomplete Rosetta Stone problem: Identifiability results for Multi-view Nonlinear ICA. 217-227 - Sinead A. Williamson, Mauricio Tec:

Random Clique Covers for Graphs with Local Density and Global Sparsity. 228-238 - Agniva Chowdhury, Jiasen Yang, Petros Drineas

:
Randomized Iterative Algorithms for Fisher Discriminant Analysis. 239-249 - Taoan Huang, Bohui Fang, Xiaohui Bei

, Fei Fang:
Dynamic Trip-Vehicle Dispatch with Scheduled and On-Demand Requests. 250-260 - Cong Xie, Oluwasanmi Koyejo, Indranil Gupta:

Fall of Empires: Breaking Byzantine-tolerant SGD by Inner Product Manipulation. 261-270 - Jonathan Kuck, Tri Dao, Shenjia Zhao, Burak Bartan, Ashish Sabharwal, Stefano Ermon:

Adaptive Hashing for Model Counting. 271-280 - Weili Nie, Ankit Patel:

Towards a Better Understanding and Regularization of GAN Training Dynamics. 281-291 - Shoubo Hu, Kun Zhang, Zhitang Chen, Laiwan Chan:

Domain Generalization via Multidomain Discriminant Analysis. 292-302 - Juan Carlos Saborío, Joachim Hertzberg:

Efficient Planning Under Uncertainty with Incremental Refinement. 303-312 - Zhe Wang, Yi Zhou, Yingbin Liang, Guanghui Lan:

Cubic Regularization with Momentum for Nonconvex Optimization. 313-322 - Karthik Abinav Sankararaman, Anand Louis, Navin Goyal:

Stability of Linear Structural Equation Models of Causal Inference. 323-333 - Robert Peharz, Antonio Vergari, Karl Stelzner, Alejandro Molina

, Martin Trapp, Xiaoting Shao, Kristian Kersting, Zoubin Ghahramani:
Random Sum-Product Networks: A Simple and Effective Approach to Probabilistic Deep Learning. 334-344 - Sanghack Lee, Vasant G. Honavar:

Towards Robust Relational Causal Discovery. 345-355 - Antonio Orvieto, Jonas Kohler, Aurélien Lucchi:

The Role of Memory in Stochastic Optimization. 356-366 - Liam Li, Ameet Talwalkar:

Random Search and Reproducibility for Neural Architecture Search. 367-377 - Sinong Geng, Mladen Kolar, Oluwasanmi Koyejo:

Joint Nonparametric Precision Matrix Estimation with Confounding. 378-388 - Sanghack Lee, Juan D. Correa, Elias Bareinboim:

General Identifiability with Arbitrary Surrogate Experiments. 389-398 - Karen Ullrich, Rianne van den Berg, Marcus A. Brubaker, David J. Fleet, Max Welling:

Differentiable Probabilistic Models of Scientific Imaging with the Fourier Slice Theorem. 399-411 - Alireza Heidari, Ihab F. Ilyas, Theodoros Rekatsinas

:
Approximate Inference in Structured Instances with Noisy Categorical Observations. 412-421 - Ahmed Touati, Harsh Satija, Joshua Romoff, Joelle Pineau, Pascal Vincent:

Randomized Value Functions via Multiplicative Normalizing Flows. 422-432 - Yujia Xie, Xiangfeng Wang, Ruijia Wang, Hongyuan Zha:

A Fast Proximal Point Method for Computing Exact Wasserstein Distance. 433-453 - Qi She, Anqi Wu:

Neural Dynamics Discovery via Gaussian Process Recurrent Neural Networks. 454-464 - Ke Sun, Piotr Koniusz, Zhen Wang:

Fisher-Bures Adversary Graph Convolutional Networks. 465-475 - Michael Gimelfarb, Scott Sanner, Chi-Guhn Lee:

Epsilon-BMC: A Bayesian Ensemble Approach to Epsilon-Greedy Exploration in Model-Free Reinforcement Learning. 476-485 - Anthony Tompkins, Fabio Ramos:

Periodic Kernel Approximation by Index Set Fourier Series Features. 486-496 - Krishnamurthy (Dj) Dvijotham, Robert Stanforth, Sven Gowal, Chongli Qin, Soham De, Pushmeet Kohli:

Efficient Neural Network Verification with Exactness Characterization. 497-507 - Robert Bamler, Farnood Salehi, Stephan Mandt:

Augmenting and Tuning Knowledge Graph Embeddings. 508-518 - Meet Taraviya, Shivaram Kalyanakrishnan:

A Tighter Analysis of Randomised Policy Iteration. 519-529 - Branislav Kveton, Csaba Szepesvári, Mohammad Ghavamzadeh, Craig Boutilier:

Perturbed-History Exploration in Stochastic Linear Bandits. 530-540 - Pan Xu, Felicia Gao, Quanquan Gu:

An Improved Convergence Analysis of Stochastic Variance-Reduced Policy Gradient. 541-551 - Xin Wang, Fisher Yu, Lisa Dunlap, Yi-An Ma, Ruth Wang, Azalia Mirhoseini, Trevor Darrell, Joseph E. Gonzalez:

Deep Mixture of Experts via Shallow Embedding. 552-562 - Manuel Haußmann, Fred A. Hamprecht, Melih Kandemir:

Sampling-Free Variational Inference of Bayesian Neural Networks by Variance Backpropagation. 563-573 - Yang Song, Sahaj Garg, Jiaxin Shi, Stefano Ermon:

Sliced Score Matching: A Scalable Approach to Density and Score Estimation. 574-584 - Tineke Blom, Stephan Bongers, Joris M. Mooij:

Beyond Structural Causal Models: Causal Constraints Models. 585-594 - Aadirupa Saha, Shreyas Sheshadri, Chiranjib Bhattacharyya:

Be Greedy: How Chromatic Number meets Regret Minimization in Graph Bandits. 595-605 - Sander Beckers, Frederick Eberhardt, Joseph Y. Halpern:

Approximate Causal Abstractions. 606-615 - Niki Kilbertus, Philip J. Ball, Matt J. Kusner, Adrian Weller, Ricardo Silva:

The Sensitivity of Counterfactual Fairness to Unmeasured Confounding. 616-626 - Christian Knoll, Franz Pernkopf:

Belief Propagation: Accurate Marginals or Accurate Partition Function - Where is the Difference? 627-636 - Benito van der Zander, Maciej Liskiewicz:

Finding Minimal d-separators in Linear Time and Applications. 637-647 - Esther Derman, Daniel J. Mankowitz, Timothy A. Mann, Shie Mannor:

A Bayesian Approach to Robust Reinforcement Learning. 648-658 - Guanghui Wang, Shiyin Lu, Lijun Zhang:

Adaptivity and Optimality: A Universal Algorithm for Online Convex Optimization. 659-668 - Adithya Raam Sankar, Prashant Doshi, Adam Goodie:

Evacuate or Not? A POMDP Model of the Decision Making of Individuals in Hurricane Evacuation Zones. 669-678 - Jan Kudlicka, Lawrence M. Murray, Fredrik Ronquist, Thomas B. Schön:

Probabilistic Programming for Birth-Death Models of Evolution Using an Alive Particle Filter with Delayed Sampling. 679-689 - Francesco Tonolini, Bjørn Sand Jensen, Roderick Murray-Smith:

Variational Sparse Coding. 690-700 - Yi Xu, Shenghuo Zhu, Sen Yang, Chi Zhang, Rong Jin, Tianbao Yang:

Learning with Non-Convex Truncated Losses by SGD. 701-711 - Alexandra Gessner, Javier Gonzalez, Maren Mahsereci:

Active Multi-Information Source Bayesian Quadrature. 712-721 - Gaurush Hiranandani, Harvineet Singh, Prakhar Gupta, Iftikhar Ahamath Burhanuddin, Zheng Wen, Branislav Kveton:

Cascading Linear Submodular Bandits: Accounting for Position Bias and Diversity in Online Learning to Rank. 722-732 - Giorgio Patrini, Rianne van den Berg, Patrick Forré, Marcello Carioni, Samarth Bhargav

, Max Welling, Tim Genewein, Frank Nielsen:
Sinkhorn AutoEncoders. 733-743 - Samuel Kolb, Pedro Zuidberg Dos Martires, Luc De Raedt:

How to Exploit Structure while Solving Weighted Model Integration Problems. 744-754 - Théo Galy-Fajou, Florian Wenzel, Christian Donner, Manfred Opper:

Multi-Class Gaussian Process Classification Made Conjugate: Efficient Inference via Data Augmentation. 755-765 - Biswajit Paria, Kirthevasan Kandasamy, Barnabás Póczos:

A Flexible Framework for Multi-Objective Bayesian Optimization using Random Scalarizations. 766-776 - Han Zhao, Otilia Stretcu, Alexander J. Smola, Geoffrey J. Gordon:

Efficient Multitask Feature and Relationship Learning. 777-787 - Jian Wu, Saul Toscano-Palmerin, Peter I. Frazier, Andrew Gordon Wilson:

Practical Multi-fidelity Bayesian Optimization for Hyperparameter Tuning. 788-798 - Christopher Aicher, Nicholas J. Foti, Emily B. Fox:

Adaptively Truncating Backpropagation Through Time to Control Gradient Bias. 799-808 - Seong Jae Hwang, Ronak Mehta, Hyunwoo J. Kim, Sterling C. Johnson, Vikas Singh:

Sampling-free Uncertainty Estimation in Gated Recurrent Units with Applications to Normative Modeling in Neuroimaging. 809-819 - Lin F. Yang

, Zheng Yu, Vladimir Braverman, Tuo Zhao, Mengdi Wang:
Online Factorization and Partition of Complex Networks by Random Walk. 820-830 - Tung Mai, Anup Rao, Matt Kapilevich, Ryan A. Rossi, Yasin Abbasi-Yadkori, Ritwik Sinha:

On Densification for Minwise Hashing. 831-840 - Sami Abu-El-Haija, Amol Kapoor, Bryan Perozzi, Joonseok Lee:

N-GCN: Multi-scale Graph Convolution for Semi-supervised Node Classification. 841-851 - Bingshan Hu, Nishant A. Mehta, Jianping Pan:

Problem-dependent Regret Bounds for Online Learning with Feedback Graphs. 852-861 - Ray Jiang, Aldo Pacchiano, Tom Stepleton, Heinrich Jiang, Silvia Chiappa:

Wasserstein Fair Classification. 862-872 - Geng Ji, Dehua Cheng, Huazhong Ning, Changhe Yuan, Hanning Zhou, Liang Xiong, Erik B. Sudderth:

Variational Training for Large-Scale Noisy-OR Bayesian Networks. 873-882 - Furong Huang, U. N. Niranjan, Ioakeim Perros, Robert Chen, Jimeng Sun, Anima Anandkumar:

Guaranteed Scalable Learning of Latent Tree Models. 883-893 - Roman Pogodin, Tor Lattimore:

On First-Order Bounds, Variance and Gap-Dependent Bounds for Adversarial Bandits. 894-904 - Danijar Hafner, Dustin Tran, Timothy P. Lillicrap, Alex Irpan, James Davidson:

Noise Contrastive Priors for Functional Uncertainty. 905-914 - Jonathan Bragg, Emma Brunskill:

Fake It Till You Make It: Learning-Compatible Performance Support. 915-924 - Smitha Milli, Anca D. Dragan:

Literal or Pedagogic Human? Analyzing Human Model Misspecification in Objective Learning. 925-934 - Benjamin Chasnov, Lillian J. Ratliff, Eric Mazumdar, Samuel Burden:

Convergence Analysis of Gradient-Based Learning in Continuous Games. 935-944 - Gregory W. Gundersen, Bianca Dumitrascu, Jordan T. Ash, Barbara E. Engelhardt:

End-to-end Training of Deep Probabilistic CCA on Paired Biomedical Observations. 945-955 - Hiteshi Sharma, Mehdi Jafarnia-Jahromi, Rahul Jain:

Approximate Relative Value Learning for Average-reward Continuous State MDPs. 956-964 - Topi Talvitie, Aleksis Vuoksenmaa, Mikko Koivisto:

Exact Sampling of Directed Acyclic Graphs from Modular Distributions. 965-974 - Eli Sherman, Ilya Shpitser:

Intervening on Network Ties. 975-984 - Steven Holtzen, Todd D. Millstein, Guy Van den Broeck:

Generating and Sampling Orbits for Lifted Probabilistic Inference. 985-994 - Olov Andersson, Per Sidén, Johan Dahlin, Patrick Doherty, Mattias Villani:

Real-Time Robotic Search using Structural Spatial Point Processes. 995-1005 - Mahak Goindani, Jennifer Neville:

Social Reinforcement Learning to Combat Fake News Spread. 1006-1016 - Rasool Fakoor, Pratik Chaudhari, Alexander J. Smola:

P3O: Policy-on Policy-off Policy Optimization. 1017-1027 - Rohit Bhattacharya, Daniel Malinsky, Ilya Shpitser:

Causal Inference Under Interference And Network Uncertainty. 1028-1038 - Tuan Anh Le, Adam R. Kosiorek, N. Siddharth, Yee Whye Teh, Frank Wood:

Revisiting Reweighted Wake-Sleep for Models with Stochastic Control Flow. 1039-1049 - Tailin Wu, Ian S. Fischer, Isaac L. Chuang, Max Tegmark:

Learnability for the Information Bottleneck. 1050-1060 - Tanmay Gangwani, Joel Lehman, Qiang Liu, Jian Peng:

Learning Belief Representations for Imitation Learning in POMDPs. 1061-1071 - David D. Jensen, Javier Burroni, Matthew J. Rattigan:

Object Conditioning for Causal Inference. 1072-1082 - Sudipto Mukherjee, Himanshu Asnani, Sreeram Kannan:

CCMI : Classifier based Conditional Mutual Information Estimation. 1083-1093 - Enrique Areyan Viqueira, Cyrus Cousins, Yasser Mohammad, Amy Greenwald:

Empirical Mechanism Design: Designing Mechanisms from Data. 1094-1104 - Ricardo Salmon, Pascal Poupart:

On the Relationship Between Satisfiability and Markov Decision Processes. 1105-1115 - M. Usaid Awan, Yameng Liu, Marco Morucci, Sudeepa Roy, Cynthia Rudin, Alexander Volfovsky:

Interpretable Almost Matching Exactly With Instrumental Variables. 1116-1126 - Chuan Guo, Jared S. Frank, Kilian Q. Weinberger:

Low Frequency Adversarial Perturbation. 1127-1137 - Ondrej Kuzelka, Jesse Davis:

Markov Logic Networks for Knowledge Base Completion: A Theoretical Analysis Under the MCAR Assumption. 1138-1148 - Rohit Bhattacharya, Razieh Nabi, Ilya Shpitser, James M. Robins:

Identification In Missing Data Models Represented By Directed Acyclic Graphs. 1149-1158 - Junkyu Lee, Radu Marinescu, Alexander Ihler, Rina Dechter:

A Weighted Mini-Bucket Bound for Solving Influence Diagram. 1159-1168 - Pavel Izmailov, Wesley J. Maddox, Polina Kirichenko, Timur Garipov, Dmitry P. Vetrov, Andrew Gordon Wilson:

Subspace Inference for Bayesian Deep Learning. 1169-1179 - Yao Liu, Adith Swaminathan, Alekh Agarwal, Emma Brunskill:

Off-Policy Policy Gradient with Stationary Distribution Correction. 1180-1190 - Jialin Song, Ravi Lanka, Yisong Yue, Masahiro Ono:

Co-training for Policy Learning. 1191-1201 - Koh Takeuchi, Yuichi Yoshida, Yoshinobu Kawahara:

Variational Inference of Penalized Regression with Submodular Functions. 1202-1211 - Chin-Wei Huang, Faruk Ahmed, Kundan Kumar, Alexandre Lacoste, Aaron C. Courville:

Probability Distillation: A Caveat and Alternatives. 1212-1221 - Yehong Zhang, Zhongxiang Dai, Bryan Kian Hsiang Low:

Bayesian Optimization with Binary Auxiliary Information. 1222-1232 - Duligur Ibeling, Thomas Icard:

On Open-Universe Causal Reasoning. 1233-1243 - Diego Mesquita, Paul Blomstedt, Samuel Kaski:

Embarrassingly Parallel MCMC using Deep Invertible Transformations. 1244-1252 - Yingzhen Yang, Jiahui Yu:

Fast Proximal Gradient Descent for A Class of Non-convex and Non-smooth Sparse Learning Problems. 1253-1262 - Nicola De Cao, Wilker Aziz, Ivan Titov:

Block Neural Autoregressive Flow. 1263-1273 - Davide Poderini, Rafael Chaves, Iris Agresti, Gonzalo Carvacho, Fabio Sciarrino:

Exclusivity Graph Approach to Instrumental Inequalities. 1274-1283

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














