


default search action
12th UAI 1996: Portland, Oregon, USA
- Eric Horvitz, Finn Verner Jensen:

UAI '96: Proceedings of the Twelfth Annual Conference on Uncertainty in Artificial Intelligence, Reed College, Portland, Oregon, USA, August 1-4, 1996. Morgan Kaufmann 1996, ISBN 1-55860-412-X - Silvia Acid, Luis M. de Campos:

An Algorithm for Finding Minimum d-Separating Sets in Belief Networks. 3-10 - John Mark Agosta:

Constraining Influence Diagram Structure by Generative Planning: An Application to the Optimization of Oil Spill Response. 11-19 - Satnam Alag, Alice M. Agogino:

Inference Using Message Propagation and Topology Transformation in Vector Gaussian Continuous Networks. 20-27 - Constantin F. Aliferis, Gregory F. Cooper:

A Structurally and Temporally Extended Bayesian Belief Network Model: Definitions, Properties, and Modeling Techniques. 28-39 - Steen A. Andersson, David Madigan, Michael D. Perlman:

An Alternative Markov Property for Chain Graphs. 40-48 - Ella M. Atkins, Edmund H. Durfee, Kang G. Shin:

Plan Development using Local Probabilistic Models. 49-56 - Donald Bamber:

Entailment in Probability of Thresholded Generalizations. 57-64 - Claude Barrouil, Jerome Lemaire:

Object Recognition with Imperfect Perception and Redundant Description. 65-72 - Mathias Bauer:

Approximations for Decision Making in the Dempster-Shafer Theory of Evidence. 73-80 - Ann Becker, Dan Geiger:

A sufficiently fast algorithm for finding close to optimal junction trees. 81-89 - Salem Benferhat, Didier Dubois, Henri Prade:

Coping with the Limitations of Rational Inference in the Framework of Possibility Theory. 90-97 - Blai Bonet, Hector Geffner:

Arguing for Decisions: A Qualitative Model of Decision Making. 98-105 - Craig Boutilier:

Learning Conventions in Multiagent Stochastic Domains using Likelihood Estimates. 106-114 - Craig Boutilier, Nir Friedman, Moisés Goldszmidt, Daphne Koller:

Context-Specific Independence in Bayesian Networks. 115-123 - John S. Breese, David Heckerman:

Decision-Theoretic Troubleshooting: A Framework for Repair and Experiment. 124-132 - Enrique F. Castillo, Cristina Solares, Patricia Gómez:

Tail Sensitivity Analysis in Bayesian Networks. 133-140 - Tom Chávez:

Decision-Analytic Approaches to Operational Decision Making: Application and Observation. 141-149 - David Maxwell Chickering:

Learning Equivalence Classes of Bayesian Network Structures. 150-157 - David Maxwell Chickering, David Heckerman:

Efficient Approximations for the Marginal Likelihood of Incomplete Data Given a Bayesian Network. 158-168 - Lonnie Chrisman:

Independence with Lower and Upper Probabilities. 169-177 - Lonnie Chrisman:

Propagation of 2-Monotone Lower Probabilities on an Undirected Graph. 178-185 - Fábio Gagliardi Cozman, Eric Krotkov:

Quasi-Bayesian Strategies for Efficient Plan Generation: Application to the Planning to Observe Problem. 186-193 - Bruce D'Ambrosio, Scott Burgess:

Some Experiments with Real-time Decision Algorithms. 194-202 - Adnan Darwiche, Gregory M. Provan:

Query DAGs: A practical paradigm for implementing belief-network inference. 203-210 - Rina Dechter:

Bucket elimination: A unifying framework for probabilistic inference. 211-219 - Rina Dechter:

Topological parameters for time-space tradeoff. 220-227 - AnHai Doan, Peter Haddawy:

Sound Abstraction of Probabilistic Actions in The Constraint Mass Assignment Framework. 228-235 - Didier Dubois, Henri Prade:

Belief Revision with Uncertain Inputs in the Possibilistic Setting. 236-243 - Yousri El Fattah, Rina Dechter:

An evaluation of structural parameters for probabilistic reasoning: Results on benchmark circuits. 244-251 - Nir Friedman, Moisés Goldszmidt:

Learning Bayesian Networks with Local Structure. 252-262 - Nir Friedman, Joseph Y. Halpern:

A Qualitative Markov Assumption and Its Implications for Belief Change. 263-273 - Nir Friedman, Zohar Yakhini:

On the Sample Complexity of Learning Bayesian Networks. 274-282 - Dan Geiger, David Heckerman, Christopher Meek:

Asymptotic Model Selection for Directed Networks with Hidden Variables. 283-290 - Vu A. Ha, Peter Haddawy:

Theoretical Foundations for Abstraction-Based Probabilistic Planning. 291-298 - Joseph Y. Halpern:

Defining Relative Likelihood in Partially-Ordered Preferential Structures. 299-306 - Max Henrion, Malcolm Pradhan, Brendan Del Favero, Kurt Huang, Gregory M. Provan, Paul O'Rorke:

Why is diagnosis using belief networks insensitive to imprecision in probabilities? 307-314 - Michael C. Horsch, David L. Poole:

Flexible Policy Construction by Information Refinement. 315-324 - Kurt Huang, Max Henrion:

Efficient Search-Based Inference for noisy-OR Belief Networks: TopEpsilon. 325-331 - Pablo H. Ibargüengoytia, Luis Enrique Sucar, Sunil Vadera:

A Probabilistic Model for Sensor Validation. 332-339 - Tommi S. Jaakkola, Michael I. Jordan:

Computing upper and lower bounds on likelihoods in intractable networks. 340-348 - Allan Leck Jensen, Finn Verner Jensen:

MIDAS: An Influence Diagram for Management of Mildew in Winter Wheat. 349-356 - Alexander V. Kozlov, Jaswinder Pal Singh:

Computational complexity reduction for BN2O networks using similarity of states. 357-364 - Henry E. Kyburg Jr.:

Uncertain Inferences and Uncertain Conclusions. 365-372 - Kathryn B. Laskey, Laura Martignon:

Bayesian Learning of Loglinear Models for Neural Connectivity. 373-380 - Daniel Lehmann:

Generalized Qualitative Probability: Savage revisited. 381-388 - Suzanne M. Mahoney, Kathryn B. Laskey:

Network Engineering for Complex Belief Networks. 389-396 - Liem Ngo:

Probabilistic Disjunctive Logic Programming. 397-404 - David M. Pennock, Michael P. Wellman:

Toward a Market Model for Bayesian Inference. 405-413 - Mark A. Peot:

Geometric Implications of the Naive Bayes Assumption. 414-419 - Judea Pearl, Rina Dechter:

Identifying Independencies in Causal Graphs with Feedback. 420-426 - Kim-Leng Poh, Eric Horvitz:

A Graph-Theoretic Analysis of Information Value. 427-435 - David Poole:

A Framework for Decision-Theoretic Planning I: Combining the Situation Calculus, Conditional Plans, Probability and Utility. 436-445 - Malcolm Pradhan, Paul Dagum:

Optimal Monte Carlo Estimation of Belief Network Inference. 446-453 - Thomas Richardson:

A Discovery Algorithm for Directed Cyclic Graphs. 454-461 - Thomas Richardson:

A Polynomial-Time Algorithm for Deciding Equivalence of Directed Cyclic Graphical Models. 462-469 - Wilhelm Rödder, Carl-Heinz Meyer:

Coherent Knowledge Processing at Maximum Entropy by SPIRIT. 470-476 - Eugene Santos Jr., Solomon Eyal Shimony, Edward Michael Williams:

Sample-and-Accumulate Algorithms for Belief Updating in Bayes Networks. 477-484 - Ross D. Shachter, Marvin Mandelbaum:

A Measure of Decision Flexibility. 485-491 - Prakash P. Shenoy:

Binary Join Trees. 492-499 - Sampath Srinivas, P. Pandurang Nayak:

Efficient enumeration of instantiations in Bayesian networks. 500-508 - Milan Studený:

On Separation Criterion and Recovery Algorithm for Chain Graphs. 509-516 - Choh Man Teng:

Possible World Partition Sequences: A Unifying Framework for Uncertain Reasoning. 517-524 - Sylvie Thiébaux, Marie-Odile Cordier, Olivier Jehl, Jean-Paul Krivine:

Supply Restoration in Power Distribution Systems: A Case Study in Integrating Model-Based Diagnosis and Repair Planning. 525-532 - Robert L. Welch:

Real Time Estimation of Bayesian Networks. 533-544 - S. K. Michael Wong:

Testing Implication of Probabilistic Dependencies. 545-553 - Peter R. Wurman, Michael P. Wellman:

Optimal Factory Scheduling using Stochastic Dominance A*. 554-563 - Yang Xiang, S. K. Michael Wong, Nick Cercone:

Critical Remarks on Single Link Search in Learning Belief Networks. 564-571

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














