


default search action
RecSys 2013: Hong Kong, China
- Qiang Yang, Irwin King, Qing Li, Pearl Pu, George Karypis:

Seventh ACM Conference on Recommender Systems, RecSys '13, Hong Kong, China, October 12-16, 2013. ACM 2013, ISBN 978-1-4503-2409-0
Technical session: context-aware
- Jiliang Tang, Huiji Gao, Xia Hu, Huan Liu:

Context-aware review helpfulness rating prediction. 1-8 - Negar Hariri, Bamshad Mobasher

, Robin D. Burke
:
Query-driven context aware recommendation. 9-16 - Marius Kaminskas, Francesco Ricci

, Markus Schedl:
Location-aware music recommendation using auto-tagging and hybrid matching. 17-24 - Bo Hu, Martin Ester:

Spatial topic modeling in online social media for location recommendation. 25-32
Technical session: methods, algorithms, and theory I
- Hossein Vahabi

, Margareta Ackerman
, David Loker, Ricardo Baeza-Yates
, Alejandro López-Ortiz:
Orthogonal query recommendation. 33-40 - Li Pu, Boi Faltings:

Understanding and improving relational matrix factorization in recommender systems. 41-48 - Oluwasanmi Koyejo, Sreangsu Acharyya, Joydeep Ghosh:

Retargeted matrix factorization for collaborative filtering. 49-56 - Lei Shi:

Trading-off among accuracy, similarity, diversity, and long-tail: a graph-based recommendation approach. 57-64 - Jason Weston, Ron J. Weiss, Hector Yee:

Nonlinear latent factorization by embedding multiple user interests. 65-68
Technical session: social media and recommender systems
- Ye Pan, Feng Cong, Kailong Chen, Yong Yu:

Diffusion-aware personalized social update recommendation. 69-76 - Yongzheng Zhang, Marco Pennacchiotti:

Recommending branded products from social media. 77-84 - Vito Claudio Ostuni, Tommaso Di Noia, Eugenio Di Sciascio

, Roberto Mirizzi:
Top-N recommendations from implicit feedback leveraging linked open data. 85-92 - Huiji Gao, Jiliang Tang, Xia Hu, Huan Liu:

Exploring temporal effects for location recommendation on location-based social networks. 93-100 - Zurina Saaya

, Rachael Rafter, Markus Schaal, Barry Smyth:
The curated web: a recommendation challenge. 101-104
Technical session: media recommendation
- Florent Garcin, Christos Dimitrakakis

, Boi Faltings:
Personalized news recommendation with context trees. 105-112 - Maria Soledad Pera

, Yiu-Kai Ng:
What to read next?: making personalized book recommendations for K-12 users. 113-120 - Amos Azaria

, Avinatan Hassidim, Sarit Kraus
, Adi Eshkol, Ofer Weintraub, Irit Netanely:
Movie recommender system for profit maximization. 121-128 - Noam Koenigstein

, Ulrich Paquet:
Xbox movies recommendations: variational bayes matrix factorization with embedded feature selection. 129-136 - Xiang Wu, Qi Liu, Enhong Chen, Liang He

, Jingsong Lv, Can Cao, Guoping Hu:
Personalized next-song recommendation in online karaokes. 137-140
Technical session: user experience
- Fabiano Belém, Rodrygo L. T. Santos

, Jussara M. Almeida, Marcos André Gonçalves
:
Topic diversity in tag recommendation. 141-148 - Tien T. Nguyen, Daniel Kluver, Ting-Yu Wang, Pik-Mai Hui, Michael D. Ekstrand

, Martijn C. Willemsen
, John Riedl:
Rating support interfaces to improve user experience and recommender accuracy. 149-156 - Peter Grasch, Alexander Felfernig, Florian Reinfrank:

ReComment: towards critiquing-based recommendation with speech interaction. 157-164 - Julian J. McAuley, Jure Leskovec

:
Hidden factors and hidden topics: understanding rating dimensions with review text. 165-172 - Zhuo Zhang, Shang Shang, Sanjeev R. Kulkarni, Pan Hui:

Improving augmented reality using recommender systems. 173-176
Technical session: beyond ratings
- Fernando Mourão, Leonardo Rocha

, Joseph A. Konstan
, Wagner Meira Jr.:
Exploiting non-content preference attributes through hybrid recommendation method. 177-184 - Houda Khrouf, Raphaël Troncy

:
Hybrid event recommendation using linked data and user diversity. 185-192 - Amit Sharma, Baoshi Yan:

Pairwise learning in recommendation: experiments with community recommendation on linkedin. 193-200 - Nagarajan Natarajan, Donghyuk Shin

, Inderjit S. Dhillon:
Which app will you use next?: collaborative filtering with interactional context. 201-208 - Toon De Pessemier, Simon Dooms, Luc Martens:

A food recommender for patients in a care facility. 209-212
Technical session: methods, algorithms, and theory II
- Harald Steck:

Evaluation of recommendations: rating-prediction and ranking. 213-220 - Konstantinos Babas, Georgios Chalkiadakis

, Evangelos Tripolitakis:
You are what you consume: a bayesian method for personalized recommendations. 221-228 - Weinan Zhang, Jun Wang, Bowei Chen

, Xiaoxue Zhao:
To personalize or not: a risk management perspective. 229-236 - Jialei Wang, Steven C. H. Hoi

, Peilin Zhao, Zhiyong Liu:
Online multi-task collaborative filtering for on-the-fly recommender systems. 237-244 - Jason Weston, Hector Yee, Ron J. Weiss:

Learning to rank recommendations with the k-order statistic loss. 245-248
Technical session: scalability
- Yong Zhuang, Wei-Sheng Chin, Yu-Chin Juan, Chih-Jen Lin

:
A fast parallel SGD for matrix factorization in shared memory systems. 249-256 - Aapo Kyrola:

DrunkardMob: billions of random walks on just a PC. 257-264 - Mikael Hammar, Robin Karlsson, Bengt J. Nilsson:

Using maximum coverage to optimize recommendation systems in e-commerce. 265-272 - Fabio Aiolli:

Efficient top-n recommendation for very large scale binary rated datasets. 273-280 - Sebastian Schelter, Christoph Boden, Martin Schenck, Alexander Alexandrov, Volker Markl:

Distributed matrix factorization with mapreduce using a series of broadcast-joins. 281-284
Industry session
- Mengxi Xu, Shlomo Berkovsky

, Sebastien Ardon, Sipat Triukose, Anirban Mahanti, Irena Koprinska
:
Catch-up TV recommendations: show old favourites and find new ones. 285-294 - Haishan Liu, Mohammad Shafkat Amin, Baoshi Yan, Anmol Bhasin:

Generating supplemental content information using virtual profiles. 295-302
Poster session
- Ammar S. Alanazi

, Michael Bain:
A people-to-people content-based reciprocal recommender using hidden markov models. 303-306 - Henry Blanco

, Francesco Ricci
:
Acquiring user profiles from implicit feedback in a conversational recommender system. 307-310 - Amos Azaria, Sarit Kraus

, Ariella Richardson:
A system for advice provision in multiple prospectselection problems. 311-314 - Nima Mirbakhsh, Charles X. Ling:

Clustering-based factorized collaborative filtering. 315-318 - Amit Tiroshi, Shlomo Berkovsky

, Mohamed Ali Kâafar
, Terence Chen, Tsvi Kuflik
:
Cross social networks interests predictions based ongraph features. 319-322 - Richard Chow, Hongxia Jin, Bart P. Knijnenburg, Gökay Saldamli:

Differential data analysis for recommender systems. 323-326 - Qianru Zheng, Horace H. S. Ip

:
Effectiveness of the data generated on different time in latent factor model. 327-330 - Fangwei Hu, Yong Yu:

Interview process learning for top-n recommendation. 331-334 - Maria Taramigkou, Efthimios Bothos

, Konstantinos Christidis
, Dimitris Apostolou
, Gregoris Mentzas
:
Escape the bubble: guided exploration of music preferences for serendipity and novelty. 335-338 - Paolo Cremonesi

, Franca Garzotto
, Massimo Quadrana:
Evaluating top-n recommendations "when the best are gone". 339-342 - Stephan Doerfel

, Robert Jäschke
:
An analysis of tag-recommender evaluation procedures. 343-346 - Xiao Yu, Xiang Ren, Yizhou Sun, Bradley Sturt, Urvashi Khandelwal, Quanquan Gu, Brandon Norick, Jiawei Han:

Recommendation in heterogeneous information networks with implicit user feedback. 347-350 - Panagiotis Adamopoulos

, Alexander Tuzhilin
:
Recommendation opportunities: improving item prediction using weighted percentile methods in collaborative filtering systems. 351-354 - Rui Gao, Bibo Hao

, Shuotian Bai, Lin Li, Ang Li
, Tingshao Zhu:
Improving user profile with personality traits predicted from social media content. 355-358 - Ido Blank, Lior Rokach, Guy Shani

:
Leveraging the citation graph to recommend keywords. 359-362 - Victor Codina, Francesco Ricci

, Luigi Ceccaroni
:
Local context modeling with semantic pre-filtering. 363-366 - Dmitry Bugaychenko, Alexandr Dzuba:

Musical recommendations and personalization in a social network. 367-370 - Daria Dzyabura

, Alexander Tuzhilin
:
Not by search alone: how recommendations complement search results. 371-374 - Michal Aharon, Natalie Aizenberg, Edward Bortnikov, Ronny Lempel, Roi Adadi, Tomer Benyamini, Liron Levin, Ran Roth, Ohad Serfaty:

OFF-set: one-pass factorization of feature sets for online recommendation in persistent cold start settings. 375-378 - Neil J. Hurley

:
Personalised ranking with diversity. 379-382 - Guibing Guo, Jie Zhang, Daniel Thalmann, Neil Yorke-Smith:

Prior ratings: a new information source for recommender systems in e-commerce. 383-386 - Alejandro Bellogín

, Javier Parapar
, Pablo Castells
:
Probabilistic collaborative filtering with negative cross entropy. 387-390 - Amihai Savir, Ronen I. Brafman

, Guy Shani
:
Recommending improved configurations for complex objects with an application in travel planning. 391-394 - Ralf Krestel, Padhraic Smyth

:
Recommending patents based on latent topics. 395-398 - Geng Tian, Liping Jing:

Recommending scientific articles using bi-relational graph-based iterative RWR. 399-402 - Thierry Silbermann, Immanuel Bayer, Steffen Rendle:

Sample selection for MCMC-based recommender systems. 403-406 - Royi Ronen, Noam Koenigstein

, Elad Ziklik, Nir Nice:
Selecting content-based features for collaborative filtering recommenders. 407-410 - Ruihai Dong, Michael P. O'Mahony

, Markus Schaal, Kevin McCarthy
, Barry Smyth:
Sentimental product recommendation. 411-414 - Ruilong Su, Li'ang Yin, Kailong Chen, Yong Yu:

Set-oriented personalized ranking for diversified top-n recommendation. 415-418 - Noam Koenigstein

, Yehuda Koren:
Towards scalable and accurate item-oriented recommendations. 419-422 - Alexander Ostrikov, Lior Rokach, Bracha Shapira

:
Using geospatial metadata to boost collaborative filtering. 423-426 - David C. Wilson, Carlos E. Seminario:

When power users attack: assessing impacts in collaborative recommender systems. 427-430 - Yue Shi, Alexandros Karatzoglou, Linas Baltrunas, Martha A. Larson, Alan Hanjalic:

xCLiMF: optimizing expected reciprocal rank for data with multiple levels of relevance. 431-434 - Jacob W. Bartel, Prasun Dewan:

Evolving friend lists in social networks. 435-438 - Anísio Lacerda, Adriano Veloso, Nivio Ziviani:

Exploratory and interactive daily deals recommendation. 439-442
Doctoral symposium
- Simon Dooms:

Dynamic generation of personalized hybrid recommender systems. 443-446 - Carlos E. Seminario:

Accuracy and robustness impacts of power user attacks on collaborative recommender systems. 447-450 - Guibing Guo:

Integrating trust and similarity to ameliorate the data sparsity and cold start for recommender systems. 451-454 - Mona Taghavi, Kaveh Bakhtiyari

, Edgar Scavino:
Agent-based computational investing recommender system. 455-458 - Panagiotis Adamopoulos

:
Beyond rating prediction accuracy: on new perspectives in recommender systems. 459-462 - David Ben-Shimon:

Anytime algorithms for top-N recommenders. 463-466
Demonstrations
- Jaroslav Kuchar, Tomás Kliegr:

GAIN: web service for user tracking and preference learning - a smart TV use case. 467-468 - Florent Garcin, Boi Faltings:

PEN RecSys: a personalized news recommender systems framework. 469-470 - Yeonchan Ahn, Sungchan Park, Sangkeun Lee, Sang-goo Lee:

A heterogeneous graph-based recommendation simulator. 471-472 - Chris Newell, Libby Miller

:
Design and evaluation of a client-side recommender system. 473-474 - Royi Ronen, Noam Koenigstein

, Elad Ziklik, Mikael Sitruk, Ronen Yaari, Neta Haiby-Weiss:
Sage: recommender engine as a cloud service. 475-476
Workshops
- Bamshad Mobasher, Dietmar Jannach, Werner Geyer, Jill Freyne, Andreas Hotho, Sarabjot Singh Anand, Ido Guy:

The fifth ACM RecSys workshop on recommender systems and the social web. 477-478 - Li Chen, Marco de Gemmis

, Alexander Felfernig, Pasquale Lops
, Francesco Ricci
, Giovanni Semeraro
, Martijn C. Willemsen
:
Workshop on human decision making in recommender systems: decisions@RecSys'13. 479-480 - Mozhgan Tavakolifard, Jon Atle Gulla, Kevin C. Almeroth, Frank Hopfgartner

, Benjamin Kille
, Till Plumbaum, Andreas Lommatzsch, Torben Brodt, Arthur Bucko, Tobias Heintz:
Workshop and challenge on news recommender systems. 481-482 - Marco de Gemmis

, Tommaso Di Noia
, Ora Lassila, Pasquale Lops
, Thomas Lukasiewicz, Giovanni Semeraro
:
Workshop on recommender systems meet big data & semantic technologies: SeRSy 2013. 483-484 - Alejandro Bellogín

, Pablo Castells
, Alan Said
, Domonkos Tikk:
Workshop on reproducibility and replication in recommender systems evaluation: RepSys. 485-486 - Tao Ye, Danny Bickson, Quan Yuan:

First workshop on large-scale recommender systems: research and best practice(LSRS 2013). 487-488 - Jim Blomo, Martin Ester, Marty Field:

RecSys challenge 2013. 489-490
Tutorials
- Martin Ester:

Recommendation in social networks. 491-492 - Alexandros Karatzoglou, Linas Baltrunas, Yue Shi:

Learning to rank for recommender systems. 493-494 - Luiz Augusto Pizzato, Anmol Bhasin:

Beyond friendship: the art, science and applications of recommending people to people in social networks. 495-496 - Alexis Tsoukiàs, Paolo Viappiani

:
Tutorial on preference handling. 497-498

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














