


default search action
FORGE 2024: Lisbon, Portugal
- David Lo, Xin Xia, Massimiliano Di Penta, Xing Hu:

Proceedings of the 2024 IEEE/ACM First International Conference on AI Foundation Models and Software Engineering, FORGE 2024, Lisbon, Portugal, 14 April 2024. ACM 2024 - Hailong Wang

, Tongtong Xu
, Bei Wang
:
Deep Multiple Assertions Generation. 1-11 - Guanyu Wang

, Yuekang Li
, Yi Liu
, Gelei Deng
, Tianlin Li
, Guosheng Xu
, Yang Liu
, Haoyu Wang
, Kailong Wang
:
MeTMaP: Metamorphic Testing for Detecting False Vector Matching Problems in LLM Augmented Generation. 12-23 - Hridya Dhulipala

, Aashish Yadavally
, Tien N. Nguyen
:
Planning to Guide LLM for Code Coverage Prediction. 24-34 - Ashwin Prasad Shivarpatna Venkatesh

, Samkutty Sabu
, Amir M. Mir
, Sofia Reis
, Eric Bodden
:
The Emergence of Large Language Models in Static Analysis: A First Look through Micro-Benchmarks. 35-39 - Jiahui Wu

, Chengjie Lu
, Aitor Arrieta
, Tao Yue
, Shaukat Ali
:
Reality Bites: Assessing the Realism of Driving Scenarios with Large Language Models. 40-51 - Kimya Khakzad Shahandashti

, Mithila Sivakumar
, Mohammad Mahdi Mohajer
, Alvine Boaye Belle
, Song Wang
, Timothy Lethbridge
:
Assessing the Impact of GPT-4 Turbo in Generating Defeaters for Assurance Cases. 52-56 - Marcos Macedo

, Yuan Tian
, Filipe Roseiro Côgo, Bram Adams
:
Exploring the Impact of the Output Format on the Evaluation of Large Language Models for Code Translation. 57-68 - Gianmario Voria

, Gemma Catolino
, Fabio Palomba
:
Is Attention All You Need? Toward a Conceptual Model for Social Awareness in Large Language Models. 69-73 - Jonathan Katzy

, Razvan Mihai Popescu
, Arie van Deursen
, Maliheh Izadi
:
An Exploratory Investigation into Code License Infringements in Large Language Model Training Datasets. 74-85 - Junjie Li

, Aseem Sangalay
, Cheng Cheng
, Yuan Tian
, Jinqiu Yang
:
Fine Tuning Large Language Model for Secure Code Generation. 86-90 - Tim van Dam

, Frank van der Heijden
, Philippe de Bekker
, Berend Nieuwschepen
, Marc Otten
, Maliheh Izadi
:
Investigating the Performance of Language Models for Completing Code in Functional Programming Languages: a Haskell Case Study. 91-102 - Changan Niu

, Ting Zhang
, Chuanyi Li
, Bin Luo
, Vincent Ng
:
On Evaluating the Efficiency of Source Code Generated by LLMs. 103-107 - Seif Abukhalaf

, Mohammad Hamdaqa
, Foutse Khomh
:
PathOCL: Path-Based Prompt Augmentation for OCL Generation with GPT-4. 108-118 - Scott Blyth

, Christoph Treude
, Markus Wagner
:
Creative and Correct: Requesting Diverse Code Solutions from AI Foundation Models. 119-123 - Yifan Wu

, Ying Li
, Siyu Yu
:
Commit Message Generation via ChatGPT: How Far Are We? 124-129

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














