


default search action
10th CoNLL 2006: New York City, USA
- Lluís Màrquez, Dan Klein:

Proceedings of the Tenth Conference on Computational Natural Language Learning, CoNLL 2006, New York City, USA, June 8-9, 2006. ACL 2006
Invited Paper
- Walter Daelemans:

A Mission for Computational Natural Language Learning. 1-5
Main Session
- Ivan Titov, James Henderson:

Porting Statistical Parsers with Data-Defined Kernels. 6-13 - Slav Petrov, Leon Barrett, Dan Klein:

Non-Local Modeling with a Mixture of PCFGs. 14-20 - Qin Iris Wang, Colin Cherry, Daniel J. Lizotte, Dale Schuurmans:

Improved Large Margin Dependency Parsing via Local Constraints and Laplacian Regularization. 21-28 - Willem H. Zuidema:

What are the Productive Units of Natural Language Grammar? A DOP Approach to the Automatic Identification of Constructions. 29-36 - Nikesh Garera, David Yarowsky:

Resolving and Generating Definite Anaphora by Modeling Hypernymy using Unlabeled Corpora. 37-44 - Oren Glickman, Ido Dagan, Walter Daelemans, Mikaela Keller, Samy Bengio:

Investigating Lexical Substitution Scoring for Subtitle Generation. 45-52 - Jun'ichi Kazama, Kentaro Torisawa:

Semantic Role Recognition Using Kernels on Weighted Marked Ordered Labeled Trees. 53-60 - Alessandro Moschitti, Daniele Pighin, Roberto Basili:

Semantic Role Labeling via Tree Kernel Joint Inference. 61-68 - Sabine Schulte im Walde:

Can Human Verb Associations Help Identify Salient Features for Semantic Verb Classification? 69-76 - Rie Kubota Ando:

Applying Alternating Structure Optimization to Word Sense Disambiguation. 77-84 - Rens Bod:

Unsupervised Parsing with U-DOP. 85-92 - Michaela Atterer, Hinrich Schütze:

A Lattice-Based Framework for Enhancing Statistical Parsers with Information from Unlabeled Corpora. 93-100 - Maria Georgescul, Alexander Clark, Susan Armstrong:

Word Distributions for Thematic Segmentation in a Support Vector Machine Approach. 101-108 - Wei-Hao Lin, Theresa Wilson, Janyce Wiebe, Alexander G. Hauptmann:

Which Side are You on? Identifying Perspectives at the Document and Sentence Levels. 109-116 - David J. Brooks:

Unsupervised Grammar Induction by Distribution and Attachment. 117-124 - Alexander Clark, Rémi Eyraud:

Learning Auxiliary Fronting with Grammatical Inference. 125-132 - Andrew Smith, Miles Osborne:

Using Gazetteers in Discriminative Information Extraction. 133-140 - Partha Pratim Talukdar, Thorsten Brants, Mark Y. Liberman, Fernando C. N. Pereira:

A Context Pattern Induction Method for Named Entity Extraction. 141-148
Shared Task
- Sabine Buchholz, Erwin Marsi:

CoNLL-X Shared Task on Multilingual Dependency Parsing. 149-164 - Yuval Krymolowski:

The Treebanks Used in the Shared Task. 165 - Giuseppe Attardi:

Experiments with a Multilanguage Non-Projective Dependency Parser. 166-170 - Eckhard Bick:

LingPars, a Linguistically Inspired, Language-Independent Machine Learner for Dependency Treebanks. 171-175 - Sander Canisius, Toine Bogers, Antal van den Bosch, Jeroen Geertzen, Erik F. Tjong Kim Sang:

Dependency Parsing by Inference over High-recall Dependency Predictions. 176-180 - Xavier Carreras, Mihai Surdeanu, Lluís Màrquez:

Projective Dependency Parsing with Perceptron. 181-185 - Ming-Wei Chang, Quang Do, Dan Roth:

A Pipeline Model for Bottom-Up Dependency Parsing. 186-190 - Yuchang Cheng, Masayuki Asahara, Yuji Matsumoto:

Multi-lingual Dependency Parsing at NAIST. 191-195 - Simon Corston-Oliver, Anthony Aue:

Dependency Parsing with Reference to Slovene, Spanish and Swedish. 196-200 - Markus Dreyer, David A. Smith, Noah A. Smith:

Vine Parsing and Minimum Risk Reranking for Speed and Precision. 201-205 - Richard Johansson, Pierre Nugues:

Investigating Multilingual Dependency Parsing. 206-210 - Ting Liu, Jinshan Ma, Huijia Zhu, Sheng Li:

Dependency Parsing Based on Dynamic Local Optimization. 211-215 - Ryan T. McDonald, Kevin Lerman, Fernando C. N. Pereira:

Multilingual Dependency Analysis with a Two-Stage Discriminative Parser. 216-220 - Joakim Nivre, Johan Hall, Jens Nilsson, Gülsen Eryigit, Svetoslav Marinov:

Labeled Pseudo-Projective Dependency Parsing with Support Vector Machines. 221-225 - Sebastian Riedel, Ruket Çakici, Iván V. Meza-Ruíz:

Multi-lingual Dependency Parsing with Incremental Integer Linear Programming. 226-230 - Michael Schiehlen, Kristina Spranger:

Language Independent Probabilistic Context-Free Parsing Bolstered by Machine Learning. 231-235 - Nobuyuki Shimizu:

Maximum Spanning Tree Algorithm for Non-projective Labeled Dependency Parsing. 236-240 - Yu-Chieh Wu, Yue-Shi Lee, Jie-Chi Yang:

The Exploration of Deterministic and Efficient Dependency Parsing. 241-245 - Deniz Yuret:

Dependency Parsing as a Classication Problem. 246-250

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














