


default search action
12th BCB 2021: Gainesville, Florida, USA
- Hongmei Jiang, Xiuzhen Huang, Jiajie Zhang:

BCB '21: 12th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, Gainesville, Florida, USA, August 1-4, 2021. ACM 2021, ISBN 978-1-4503-8450-6
Sequence analysis
- Hang Su, Ziwei Chen, Maya L. Najarian, Martin T. Ferris, Fernando Pardo-Manuel de Villena, Leonard McMillan

:
A k-mer query tool for assessing population diversity in pangenomes. 1:1-1:9 - Marie Hoffmann, Michael T. Monaghan

, Knut Reinert
:
PriSeT: efficient de novo primer discovery. 2:1-2:12 - Elizabeth R. Koning

, Malachi Phillips, Tandy J. Warnow:
ppIacerDC: a new scalable phylogenetic placement method. 3:1-3:9 - Yael Ben-Ari, Dan Flomin, Lianrong Pu, Yaron Orenstein

, Ron Shamir:
Improving the efficiency of de Bruijn graph construction using compact universal hitting sets. 4:1-4:9
Electronic health records
- Aishwarya Mandyam, Elizabeth C. Yoo, Jeff Soules, Krzysztof Laudanski, Barbara E. Engelhardt

:
COP-E-CAT: cleaning and organization pipeline for EHR computational and analytic tasks. 5:1-5:9 - Ziyang Song, Xavier Sumba Toral, Yixin Xu, Aihua Liu, Liming Guo, Guido Powell, Aman Verma

, David L. Buckeridge
, Ariane Marelli, Yue Li:
Supervised multi-specialist topic model with applications on large-scale electronic health record data. 6:1-6:26 - Mehak Gupta

, Thao-Ly T. Phan
, H. Timothy Bunnell, Rahmatollah Beheshti
:
Concurrent imputation and prediction on EHR data using bi-directional GANs: Bi-GANs for EHR imputation and prediction. 7:1-7:9 - Tanbir Ahmed, Md Momin Al Aziz, Noman Mohammed, Xiaoqian Jiang:

Privacy preserving neural networks for electronic health records de-identification. 8:1-8:6 - Kai Zhang, Xiaoqian Jiang, Mahboubeh Madadi, Luyao Chen

, Sean I. Savitz, Shayan Shams:
DBNet: a novel deep learning framework for mechanical ventilation prediction using electronic health records. 9:1-9:8
System biology
- Xiaofei Zhang, Ye Yu, Chan Hee Mok, James N. MacLeod, Jinze Liu:

Gazelle: transcript abundance query against large-scale RNA-seq experiments. 10:1-10:8 - Jonathan Karin

, Hagai Michel, Yaron Orenstein
:
MultiRBP: multi-task neural network for protein-RNA binding prediction. 11:1-11:9 - Chunrui Xu, Yang Cao:

A spatiotemporal model of polarity and spatial gradient establishment in caulobacter crescentus. 12:1-12:10 - Bradley Feiger, Erick Lorenzana, David Ranney, Muath Bishawi, Julie Doberne, Andrew Vekstein, Soraya Voigt, G. Chad Hughes, Amanda Randles

:
Predicting aneurysmal degeneration of type B aortic dissection with computational fluid dynamics. 13:1-13:6
Genomic variation
- Anwica Kashfeen, Leonard McMillan

:
Frontier: finding the boundaries of novel transposable element insertions in genomes. 14:1-14:10 - Meijun Gao, Kevin J. Liu

:
Statistical analysis of GC-biased gene conversion and recombination hotspots in eukaryotic genomes: a phylogenetic hidden Markov model-based approach. 15:1-15:24 - Jaroslaw Paszek

, Oliver Eulenstein, Pawel Górecki:
Novel genomic duplication models through integer linear programming. 16:1-16:11
Health monitoring & phenotyping
- Xianlong Zeng, Simon M. Lin, Chang Liu:

Transformer-based unsupervised patient representation learning based on medical claims for risk stratification and analysis. 17:1-17:9 - Zongxing Xie, Bing Zhou, Fan Ye:

Signal quality detection towards practical non-touch vital sign monitoring. 18:1-18:9 - Sara Nouri Golmaei, Xiao Luo:

DeepNote-GNN: predicting hospital readmission using clinical notes and patient network. 19:1-19:9 - Youjia Zhou, Methun Kamruzzaman, Patrick S. Schnable

, Bala Krishnamoorthy, Ananth Kalyanaraman, Bei Wang
:
Pheno-mapper: an interactive toolbox for the visual exploration of phenomics data. 20:1-20:10
Structural bioinformatics
- Russell B. Davidson, Mathialakan Thavappiragasam, T. Chad Effler, Jess Woods, Dwayne A. Elias, Jerry M. Parks

, Ada Sedova:
Modeling protein structures from predicted contacts with modern molecular dynamics potentials: accuracy, sensitivity, and refinement. 21:1-21:10 - Linkel Boateng, Anita Nag, Homayoun Valafar:

Computational modeling of SARS-CoV-2 Nsp1 binding to human ribosomal 40S complex. 22:1-22:6
Single cell omics
- Jinpeng Liu, Xinan Liu, Ye Yu, Chi Wang, Jinze Liu:

FastCount: a fast gene count software for single-cell RNA-seq data. 23:1-23:8 - Daniel N. Baker, Nathan Dyjack, Vladimir Braverman, Stephanie C. Hicks, Ben Langmead:

Fast and memory-efficient scRNA-seq k-means clustering with various distances. 24:1-24:8 - Russell A. Li, Zhandong Liu:

A hybrid deep neural network for robust single-cell genome-wide DNA methylation detection. 25:1-25:6 - Fatima Zare, Jacob Stark, Sheida Nabavi:

Copy number variation detection using single cell sequencing data. 26:1-26:6
Machine learning & drug design
- Tianfan Fu, Cao Xiao, Kexin Huang, Lucas M. Glass, Jimeng Sun

:
SPEAR: self-supervised post-training enhancer for molecule optimization. 27:1-27:10 - Natalia Khuri, Sarah Parsons:

A value-based approach for training of classifiers with high-throughput small molecule screening data. 28:1-28:10 - Amir Hosein Safari, Nafiseh Sedaghat, Hooman Zabeti, Alpha Forna, Leonid Chindelevitch

, Maxwell W. Libbrecht:
Predicting drug resistance in M. tuberculosis using a long-term recurrent convolutional network. 29:1-29:10 - Lizhen Shi, Bo Chen:

LSHvec: a vector representation of DNA sequences using locality sensitive hashing and FastText word embeddings. 30:1-30:10
Medical imaging
- Hugo Michard, Bertrand Luvison, Quoc Cuong Pham, Antonio J. Morales-Artacho, Gaël Guilhem:

AW-Net: automatic muscle structure analysis on B-mode ultrasound images for injury prevention. 31:1-31:9 - Anthony Rios, Eric B. Durbin, Isaac Hands, Ramakanth Kavuluru:

Assigning ICD-O-3 codes to pathology reports using neural multi-task training with hierarchical regularization. 32:1-32:10 - Zhao Li, Rongbin Li, Kendall J. Kiser

, Luca Giancardo, W. Jim Zheng:
Segmenting thoracic cavities with neoplastic lesions: a head-to-head benchmark with fully convolutional neural networks. 33:1-33:8 - Martha Rebeca Canales-Fiscal, Rocío Ortiz López, Regina Barzilay, Victor Treviño, Servando Cardona-Huerta, Luis Javier Ramírez-Treviño, Adam Yala, José G. Tamez-Peña

:
COVID-19 classification using thermal images: thermal images capability for identifying COVID-19 using traditional machine learning classifiers. 34:1-34:5 - Kenji Fujimoto

, Tsubasa Mizugaki, Utkrisht Rajkumar, Hironori Shigeta, Shigeto Seno, Yutaka Uchida, Masaru Ishii, Vineet Bafna, Hideo Matsuda:
A CNN-based cell tracking method for multi-slice intravital imaging data. 35:1-35:7
Graphs & networks
- Jack Lanchantin, Tom Weingarten, Arshdeep Sekhon, Clint Miller, Yanjun Qi:

Transfer learning for predicting virus-host protein interactions for novel virus sequences. 36:1-36:10 - Anuj Godase, Md. Khaledur Rahman, Ariful Azad:

GNNfam: utilizing sparsity in protein family predictions using graph neural networks. 37:1-37:10 - Lisa Oh, Bowen Dai, Chris Bailey-Kellogg:

A multi-resolution graph convolution network for contiguous epitope prediction. 38:1-38:10 - Erman Ayday, Youngjin Yoo

, Anisa Halimi:
ShareTrace: an iterative message passing algorithm for efficient and effective disease risk assessment on an interaction graph. 39:1-39:6 - Zican Li, Wooyoung Kim:

Investigating statistical analysis for network motifs. 40:1-40:6
COVID-19
- Shayom Debopadhaya

, John S. Erickson, Kristin P. Bennett:
Temporal analysis of social determinants associated with COVID-19 mortality. 41:1-41:10 - Tarun Naren, Yuanda Zhu, May Dongmei Wang:

COVID-19 diagnosis using model agnostic meta-learning on limited chest X-ray images. 42:1-42:9 - Christopher Whitfield

, Yang Liu
, Mohd Anwar:
Surveillance of COVID-19 pandemic using social media: a reddit study in North Carolina. 43:1-43:8 - Lodewijk Brand, Lauren Zoe Baker, Hua Wang:

A multi-instance support vector machine with incomplete data for clinical outcome prediction of COVID-19. 44:1-44:6
Clinical trials & outcome prediction
- Eric V. Strobl, Thomas A. Lasko:

Synthesized difference in differences. 45:1-45:10 - Xiao Shou

, Tian Gao, Dharmashankar Subramanian, Kristin P. Bennett:
Match2: hybrid self-organizing map and deep learning strategies for treatment effect estimation. 46:1-46:10 - Haidong Yi, Natalie Stanley:

CytoSet: predicting clinical outcomes via set-modeling of cytometry data. 47:1-47:8 - Robert Lyons, Geoffrey Ross Low, Clare Bates Congdon, Melissa Ceruolo, Marissa Ballesteros, Steven Cambria, Paolo DePetrillo:

Towards an extensible ontology for streaming sensor data for clinical trials. 48:1-48:6 - Shubo Tian

, Arslan Erdengasileng, Xi Yang, Yi Guo, Yonghui Wu, Jinfeng Zhang, Jiang Bian, Zhe He:
Transformer-based named entity recognition for parsing clinical trial eligibility criteria. 49:1-49:6
Cancer
- Bingjun Li

, Tianyu Wang, Sheida Nabavi:
Cancer molecular subtype classification by graph convolutional networks on multi-omics data. 50:1-50:9 - Priyankar Bose

, William C. Sleeman IV, Khajamoinuddin Syed, Michael Hagan, Jatinder Palta, Rishabh Kapoor, Preetam Ghosh
:
Deep neural network models to automate incident triage in the radiation oncology incident learning system. 51:1-51:10 - Yibin Wang

, William Neil Duggar
, Toms V. Thomas, P. Russell Roberts, Linkan Bian, Haifeng Wang:
Extracapsular extension identification for head and neck cancer using multi-scale 3D deep neural network. 52:1-52:5
Ontologies & databases
- Lucas Jing Liu, Victor Ortiz-Soriano

, Javier A. Neyra, Jin Chen:
KGDAL: knowledge graph guided double attention LSTM for rolling mortality prediction for AKI-D patients. 53:1-53:10 - Sunil Mohan, Rico Angell, Nicholas Monath, Andrew McCallum:

Low resource recognition and linking of biomedical concepts from a large ontology. 54:1-54:10 - Jiho Noh

, Ramakanth Kavuluru:
Joint learning for biomedical NER and entity normalization: encoding schemes, counterfactual examples, and zero-shot evaluation. 55:1-55:10 - Zhuoyan Li, Sheng Wang:

HYPON: embedding biomedical ontology with entity sets. 56:1-56:7 - Ye Wu, Hing-Fung Ting, Tak Wah Lam

, Ruibang Luo
:
BioNumQA-BERT: answering biomedical questions using numerical facts with a deep language representation model. 57:1-57:6
BCB conference poster presentations
- Gun Woo (Warren) Park

, Kevin Bryson
:
LDEncoder: reference deep learning-based feature detector for transfer learning in the field of epigenomics. 58:1 - Christopher R. Beal, John G. Peters, Ronald J. Nowling:

Sequence model evaluation framework for STARR-seq peak calling. 59:1 - Md. Sadek Hossain Asif

:
Developing a modified version of generative adversarial network to predict the potential anti-viral drug of COVID-19. 60:1 - Alice Feng:

Using electronic health records to accurately predict COVID-19 health outcomes through a novel machine learning pipeline. 61:1 - Rahmatullah Roche, Sutanu Bhattacharya

, Debswapna Bhattacharya:
Hybridized distance- and contact- based hierarchical protein structure modeling using DConStruct. 62:1 - Viktor Zenkov, James O'Connor, Hayley McNamara, Ian A. Cockburn

, Vitaly V. Ganusov:
Do microscopy imaging frequency and experiment duration impact the analysis of T cell movement? 63:1 - Yuhan Du, Anthony R. Rafferty, Fionnuala M. McAuliffe, Catherine Mooney

:
Explaining large-for-gestational-age births: a random forest classifier with a novel local interpretation method. 64:1 - Mike Wong, Nayana Laxmeshwar, Rachit Joshi, Anagha Kulkarni:

Browsing weighted interactome models using GeneDive. 65:1 - Mike Wong, Saeideh Ghahghaei, Arvind Chandna

, Anagha Kulkarni:
Scalable non-invasive pediatric cerebral visual impairment screening with the higher visual function question inventory (HVFQI). 66:1 - Seoungdeok Jeon, Zachary Colburn, Joshua Sakai, Ling-Hong Hung, Ka Yee Yeung:

Application of natural language processing and machine learning to radiology reports. 67:1 - Riya Gupta, Aditya M. Rao, Lara Murphy Jones, Purvesh Khatri

:
Formulating a gene signature for diagnosis of autoimmune and infectious diseases. 68:1 - Oleg Shpynov, Roman Chernyatchik, Petr Tsurinov, Maxim N. Artyomov:

SPAN and JBR: analysis and visualization toolkit for peak calling. 69:1 - Petr Tsurinov, Oleg Shpynov, Nina Lukashina, Daria Likholetova, Maxim N. Artyomov:

FARM: hierarchical association rule mining and visualization method. 70:1 - Wangui Mbuguiro, Feilim Mac Gabhann:

Mechanistic model demonstrates importance of autocrine IL-8 secretion by neutrophils. 71:1 - Oleg Shpynov, Nikolai Kapralov:

PubTrends: a scientific literature explorer. 72:1 - Garrett Yoon, Vincent J. Major:

Probing automated treatment of urinary tract infections for bias: a case-study where machine learning perpetuates structural differences and racial disparities. 73:1 - Bahá El Kassaby

, Kunde Ramamoorthy Govindarajan, Francisco Castellanos, Carol Bult:
MVAR: a mouse variation registry. 74:1 - Caroline Cannistra

, Alex Yuan, Wenying Shou:
Inferring interaction networks from microbial time series data: it's not just finding a statistic. 75:1 - Cheng Chen, Stephen K. Grady, Sally R. Ellingson, Michael A. Langston:

Gene-disease-drug link prediction using tripartite graphs. 76:1 - Lauren Losin, Daniel Veltri:

Exploring target specificity of antimicrobial peptides through deep learning embeddings. 77:1 - Shravani Bobde, Fahad Alsaab, Guangshun Wang, Monique L. van Hoek:

Designing novel antimicrobial peptides against multi-drug resistant bacteria. 78:1 - Hannah Guan:

The genetics of human aging: predicting age and age-related diseases by deep mining high dimensional biomarker data. 79:1
ParBio workshop paper presentations
- Femi William, Feng Zhu

:
CNN models for eye state classification using EEG with temporal ordering. 80:1-80:8 - Rossana Mancuso, Marzia Settino, Mario Cannataro:

Data mining for electroencephalogram signal processing and analysis. 81:1-81:10 - Jae-Seung Yeom

, Konstantia Georgouli
, Robert Blake, Ali Navid
:
Towards dynamic simulation of a whole cell model. 82:1-82:10
HPC-BOD workshop paper presentations
- Ziynet Nesibe Kesimoglu, Serdar Bozdag:

SUPREME: a cancer subtype prediction methodology integrating multiple biological datatypes using graph convolutional neural networks. 83:1 - Yashu Vashishath, Serdar Bozdag:

GWAS analysis to compute genetic markers of progression to Alzheimer's disease. 84:1 - Umair Mohammad, Fahad Saeed

:
Search feasibility in distributed MS-proteomics big data. 85:1 - Sumesh Kumar, Fahad Saeed

:
Real-time peptide identification from high-throughput mass-spectrometry data. 86:1

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














