


default search action
31st UAI 2015: Amsterdam, The Netherlands
- Marina Meila, Tom Heskes:

Proceedings of the Thirty-First Conference on Uncertainty in Artificial Intelligence, UAI 2015, July 12-16, 2015, Amsterdam, The Netherlands. AUAI Press 2015, ISBN 978-0-9966431-0-8 - Yasin Abbasi-Yadkori, Csaba Szepesvári:

Bayesian Optimal Control of Smoothly Parameterized Systems. 1-11 - Nadia Ben Abdallah, Sébastien Destercke:

Optimal expert elicitation to reduce interval uncertainty. 12-21 - Dimitris Achlioptas, Pei Jiang:

Stochastic Integration via Error-Correcting Codes. 22-31 - Tameem Adel, David Balduzzi, Ali Ghodsi:

Learning the Structure of Sum-Product Networks via an SVD-based Algorithm. 32-41 - Séverine Affeldt, Hervé Isambert:

Robust reconstruction of causal graphical models based on conditional 2-point and 3-point information. 42-51 - Stefano V. Albrecht, Subramanian Ramamoorthy:

Are You Doing What I Think You Are Doing? Criticising Uncertain Agent Models. 52-61 - Alnur Ali, J. Zico Kolter, Steven Diamond, Stephen P. Boyd:

Disciplined Convex Stochastic Programming: A New Framework for Stochastic Optimization. 62-71 - Nabiha Asghar, Jesse Hoey:

Intelligent Affect: Rational Decision Making for Socially Aligned Agents. 72-81 - Hassan Ashtiani, Shai Ben-David:

Representation Learning for Clustering: A Statistical Framework. 82-91 - Kaiser Asif, Wei Xing, Sima Behpour, Brian D. Ziebart:

Adversarial Cost-Sensitive Classification. 92-101 - Dena Marie Asta, Cosma Rohilla Shalizi:

Geometric Network Comparisons. 102-110 - Pierre-Luc Bacon, Borja Balle, Doina Precup:

Learning and Planning with Timing Information in Markov Decision Processes. 111-120 - Christian Bauckhage, Kristian Kersting, Fabian Hadiji:

Parameterizing the Distance Distribution of Undirected Networks. 121-130 - Paul Beame, Vincent Liew:

New Limits for Knowledge Compilation and Applications to Exact Model Counting. 131-140 - Vaishak Belle, Guy Van den Broeck, Andrea Passerini:

Hashing-Based Approximate Probabilistic Inference in Hybrid Domains. 141-150 - Giorgos Borboudakis, Ioannis Tsamardinos:

Bayesian Network Learning with Discrete Case-Control Data. 151-160 - Guy Van den Broeck, Karthika Mohan, Arthur Choi, Adnan Darwiche, Judea Pearl:

Efficient Algorithms for Bayesian Network Parameter Learning from Incomplete Data. 161-170 - C. G. Saneem Ahmed, Harikrishna Narasimhan, Shivani Agarwal:

Bayes Optimal Feature Selection for Supervised Learning with General Performance Measures. 171-180 - Krzysztof Chalupka, Pietro Perona, Frederick Eberhardt:

Visual Causal Feature Learning. 181-190 - Wei-Lun Chao, Boqing Gong, Kristen Grauman, Fei Sha:

Large-Margin Determinantal Point Processes. 191-200 - Shouyuan Chen, Yang Liu, Michael R. Lyu, Irwin King, Shengyu Zhang:

Fast Relative-Error Approximation Algorithm for Ridge Regression. 201-210 - David Maxwell Chickering, Christopher Meek:

Selective Greedy Equivalence Search: Finding Optimal Bayesian Networks Using a Polynomial Number of Score Evaluations. 211-219 - Nicolò Colombo, Nikos Vlassis:

Stable Spectral Learning Based on Schur Decomposition. 220-227 - Andreas C. Damianou, Neil D. Lawrence:

Semi-described and semi-supervised learning with Gaussian processes. 228-237 - Nikhil R. Devanur, Miroslav Dudík, Zhiyi Huang, David M. Pennock:

Budget Constraints in Prediction Markets. 238-247 - Dragan Doder, Zoran Ognjanovic:

A Probabilistic Logic for Reasoning about Uncertain Temporal Information. 248-257 - Gintare Karolina Dziugaite, Daniel M. Roy, Zoubin Ghahramani:

Training generative neural networks via Maximum Mean Discrepancy optimization. 258-267 - Sholeh Forouzan, Alexander Ihler:

Incremental Region Selection for Mini-bucket Elimination Bounds. 268-277 - Shuyang Gao, Greg Ver Steeg, Aram Galstyan:

Estimating Mutual Information by Local Gaussian Approximation. 278-285 - Jacob R. Gardner, Xinyu Song, Kilian Q. Weinberger, Dennis L. Barbour, John P. Cunningham:

Psychophysical Detection Testing with Bayesian Active Learning. 286-295 - Thomas Geier, Felix Richter, Susanne Biundo:

Locally Conditioned Belief Propagation. 296-305 - Konstantinos Georgatzis, Christopher K. I. Williams:

Discriminative Switching Linear Dynamical Systems applied to Physiological Condition Monitoring. 306-315 - Golshan Golnari, Amir Asiaee T., Arindam Banerjee, Zhi-Li Zhang:

Revisiting Non-Progressive Influence Models: Scalable Influence Maximization in Social Networks. 316-325 - Prem Gopalan, Jake M. Hofman, David M. Blei:

Scalable Recommendation with Hierarchical Poisson Factorization. 326-335 - Yuri Grinberg, Theodore J. Perkins:

State Sequence Analysis in Hidden Markov Models. 336-344 - Dylan Hadfield-Menell, Stuart Russell:

Multitasking: Optimal Planning for Bandit Superprocesses. 345-354 - Stefan Hadjis, Stefano Ermon:

Importance Sampling over Sets: A New Probabilistic Inference Scheme. 355-364 - Jesse Hostetler, Alan Fern, Thomas G. Dietterich:

Progressive Abstraction Refinement for Sparse Sampling. 365-374 - Changwei Hu, Piyush Rai, Lawrence Carin:

Zero-Truncated Poisson Tensor Factorization for Massive Binary Tensors. 375-384 - David Hughes, Kevin Hwang, Lirong Xia:

Computing Optimal Bayesian Decisions for Rank Aggregation via MCMC Sampling. 385-394 - Antti Hyttinen, Frederick Eberhardt, Matti Järvisalo:

Do-calculus when the True Graph Is Unknown. 395-404 - Wittawat Jitkrittum, Arthur Gretton, Nicolas Heess, S. M. Ali Eslami, Balaji Lakshminarayanan, Dino Sejdinovic, Zoltán Szabó:

Kernel-Based Just-In-Time Learning for Passing Expectation Propagation Messages. 405-414 - Kustaa Kangas, Teppo Mikael Niinimäki, Mikko Koivisto:

Averaging of Decomposable Graphs by Dynamic Programming and Sampling. 415-424 - Bahman Yari Saeed Khanloo, Gholamreza Haffari:

Novel Bernstein-like Concentration Inequalities for the Missing Mass. 425-434 - Adrian Kim, Kyomin Jung, Yongsub Lim, Daniel Tarlow, Pushmeet Kohli:

Minimizing Expected Losses in Perturbation Models with Multidimensional Parametric Min-cuts. 435-443 - Alp Kucukelbir, David M. Blei:

Population Empirical Bayes. 444-453 - Ondrej Kuzelka, Jesse Davis, Steven Schockaert:

Encoding Markov logic networks in Possibilistic Logic. 454-463 - Jan Leike, Marcus Hutter:

On the Computability of AIXI. 464-473 - Tianyang Li, Harsh H. Pareek, Pradeep Ravikumar, Dhruv Balwada, Kevin Speer:

Tracking with ranked signals. 474-483 - Steven Cheng-Xian Li, Benjamin M. Marlin:

Classification of Sparse and Irregularly Sampled Time Series with Mixtures of Expected Gaussian Kernels and Random Features. 484-493 - Wenhao Liu, Ross D. Shachter:

Complexity of the Exact Solution to the Test Sequencing Problem. 494-503 - Bo Liu, Ji Liu, Mohammad Ghavamzadeh, Sridhar Mahadevan, Marek Petrik:

Finite-Sample Analysis of Proximal Gradient TD Algorithms. 504-513 - Qiang Liu, Jian Peng, Alexander Ihler, John W. Fisher III:

Estimating the Partition Function by Discriminance Sampling. 514-522 - Wen Wei Loh

, Thomas S. Richardson:
A Finite Population Likelihood Ratio Test of the Sharp Null Hypothesis for Compliers. 523-532 - Jianzhu Ma, Feng Zhao, Jinbo Xu:

Structure Learning Constrained by Node-Specific Degree Distribution. 533-541 - Yifei Ma, Tzu-Kuo Huang, Jeff G. Schneider:

Active Search and Bandits on Graphs using Sigma-Optimality. 542-551 - Ashique Rupam Mahmood, Richard S. Sutton:

Off-policy learning based on weighted importance sampling with linear computational complexity. 552-561 - Brandon M. Malone, Matti Järvisalo, Petri Myllymäki:

Impact of Learning Strategies on the Quality of Bayesian Networks: An Empirical Evaluation. 562-571 - Katerina Marazopoulou, Marc E. Maier, David D. Jensen:

Learning the Structure of Causal Models with Relational and Temporal Dependence. 572-581 - Edward Meeds, Robert Leenders, Max Welling:

Hamiltonian ABC. 582-591 - Nikita Mishra, Abhradeep Thakurta:

(Nearly) Optimal Differentially Private Stochastic Multi-Arm Bandits. 592-601 - Martin Mladenov, Kristian Kersting:

Equitable Partitions of Concave Free Energies. 602-611 - Mehryar Mohri, Andres Muñoz Medina:

Non-parametric Revenue Optimization for Generalized Second Price auctions.. 612-621 - José L. Monteiro, Susana Vinga, Alexandra M. Carvalho:

Polynomial-time algorithm for learning optimal tree-augmented dynamic Bayesian networks. 622-631 - Mathias Niepert, Pedro M. Domingos:

Learning and Inference in Tractable Probabilistic Knowledge Bases. 632-641 - Ardavan Salehi Nobandegani, Ioannis N. Psaromiligkos:

Multi-Context Models for Reasoning under Partial Knowledge: Generative Process and Inference Grammar. 642-651 - Hengyue Pan, Hui Jiang:

Annealed Gradient Descent for Deep Learning. 652-661 - Sejun Park, Jinwoo Shin:

Max-Product Belief Propagation for Linear Programming: Applications to Combinatorial Optimization. 662-671 - Hristo S. Paskov, John C. Mitchell, Trevor J. Hastie:

Fast Algorithms for Learning with Long N-grams via Suffix Tree Based Matrix Multiplication. 672-681 - Emilija Perkovic, Johannes Textor, Markus Kalisch, Marloes H. Maathuis:

A Complete Generalized Adjustment Criterion. 682-691 - Marek Petrik, Xiaojian Wu:

Optimal Threshold Control for Energy Arbitrage with Degradable Battery Storage. 692-701 - Sergey M. Plis, David Danks, Jianyu Yang:

Mesochronal Structure Learning. 702-711 - Jay Pujara, Ben London, Lise Getoor:

Budgeted Online Collective Inference. 712-721 - Zhen Qin, Christian R. Shelton:

Auxiliary Gibbs Sampling for Inference in Piecewise-Constant Conditional Intensity Models. 722-731 - Aswin Raghavan, Roni Khardon, Prasad Tadepalli

, Alan Fern:
Memory-Effcient Symbolic Online Planning for Factored MDPs. 732-741 - Rajesh Ranganath, Adler J. Perotte, Noémie Elhadad, David M. Blei:

The Survival Filter: Joint Survival Analysis with a Latent Time Series. 742-751 - Sashank J. Reddi, Barnabás Póczos, Alexander J. Smola:

Communication Efficient Coresets for Empirical Loss Minimization. 752-761 - Sashank J. Reddi, Ahmed Hefny, Carlton Downey, Avinava Dubey, Suvrit Sra:

Large-scale randomized-coordinate descent methods with non-separable linear constraints. 762-771 - Khaled S. Refaat, Adnan Darwiche:

An Upper Bound on the Global Optimum in Parameter Estimation. 772-781 - Kurt Routley, Oliver Schulte:

A Markov Game Model for Valuing Player Actions in Ice Hockey. 782-791 - Amirreza Shaban, Mehrdad Farajtabar, Bo Xie, Le Song, Byron Boots:

Learning Latent Variable Models by Improving Spectral Solutions with Exterior Point Method. 792-801 - Ilya Shpitser, Karthika Mohan, Judea Pearl:

Missing Data as a Causal and Probabilistic Problem. 802-811 - Anshumali Shrivastava, Ping Li:

Improved Asymmetric Locality Sensitive Hashing (ALSH) for Maximum Inner Product Search (MIPS). 812-821 - Dag Sonntag, Matti Järvisalo, José M. Peña, Antti Hyttinen:

Learning Optimal Chain Graphs with Answer Set Programming. 822-831 - Milan Studený:

How matroids occur in the context of learning Bayesian network structure. 832-841 - Liessman Sturlaugson, John W. Sheppard:

The Long-Run Behavior of Continuous Time Bayesian Networks. 842-851 - Wen Sun, J. Andrew Bagnell:

Online Bellman Residual Algorithms with Predictive Error Guarantees. 852-861 - Danica J. Sutherland, Jeff G. Schneider:

On the Error of Random Fourier Features. 862-871 - Alex Tank, Nicholas J. Foti, Emily B. Fox:

Bayesian Structure Learning for Stationary Time Series. 872-881 - Johannes Textor, Alexander Idelberger, Maciej Liskiewicz:

Learning from Pairwise Marginal Independencies. 882-891 - Luke Vilnis, David Belanger, Daniel Sheldon, Andrew McCallum:

Bethe Projections for Non-Local Inference. 892-901 - Wei Wang, Stuart Russell:

A Smart-Dumb/Dumb-Smart Algorithm for Efficient Split-Merge MCMC. 902-911 - Erwin Walraven, Matthijs T. J. Spaan:

Planning under Uncertainty with Weighted State Scenarios. 912-921 - Xuezhi Wang, Jeff G. Schneider:

Generalization Bounds for Transfer Learning under Model Shift. 922-931 - Yu Wang, David P. Wipf, Jeong-Min Yun, Wei Chen, Ian J. Wassell:

Clustered Sparse Bayesian Learning. 932-941 - Adrian Weller:

Bethe and Related Pairwise Entropy Approximations. 942-951 - Jason Xu, Vladimir N. Minin:

Effcient Transition Probability Computation for Continuous-Time Branching Processes via Compressed Sensing. 952-961 - Chunlai Zhou, Yuan Feng:

Extend Transferable Belief Models with Probabilistic Priors. 962-971 - Yun Zhou, Norman E. Fenton, Timothy M. Hospedales, Martin Neil:

Probabilistic Graphical Models Parameter Learning with Transferred Prior and Constraints. 972-981

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














