


default search action
RecSys 2019: Copenhagen, Denmark
- Toine Bogers, Alan Said, Peter Brusilovsky, Domonkos Tikk:

Proceedings of the 13th ACM Conference on Recommender Systems, RecSys 2019, Copenhagen, Denmark, September 16-20, 2019. ACM 2019, ISBN 978-1-4503-6243-6
Invited keynotes
- Mireille Hildebrandt:

Rude awakenings from behaviourist dreams. Methodological integrity and the GDPR. 1 - Eszter Hargittai:

Whose data traces, whose voices? Inequality in online participation and why it matters for recommendation systems research. 2
Ranking and deep learning in recommenders
- Changhua Pei, Yi Zhang

, Yongfeng Zhang, Fei Sun, Xiao Lin, Hanxiao Sun, Jian Wu
, Peng Jiang
, Junfeng Ge, Wenwu Ou, Dan Pei
:
Personalized re-ranking for recommendation. 3-11 - Erzsébet Frigó, Levente Kocsis:

Online ranking combination. 12-19 - Xiao Lin, Hongjie Chen, Changhua Pei, Fei Sun, Xuanji Xiao, Hanxiao Sun, Yongfeng Zhang, Wenwu Ou, Peng Jiang

:
A pareto-efficient algorithm for multiple objective optimization in e-commerce recommendation. 20-28 - Qian Zhao, Martijn C. Willemsen

, Gediminas Adomavicius, F. Maxwell Harper, Joseph A. Konstan
:
From preference into decision making: modeling user interactions in recommender systems. 29-33 - Huafeng Liu

, Jingxuan Wen, Liping Jing, Jian Yu:
Deep generative ranking for personalized recommendation. 34-42 - Zhe Zhao, Lichan Hong, Li Wei, Jilin Chen, Aniruddh Nath, Shawn Andrews, Aditee Kumthekar, Maheswaran Sathiamoorthy, Xinyang Yi, Ed H. Chi:

Recommending what video to watch next: a multitask ranking system. 43-51
User side of recommender systems
- Amy A. Winecoff, Florin Brasoveanu, Bryce Casavant, Pearce Washabaugh, Matthew Graham:

Users in the loop: a psychologically-informed approach to similar item retrieval. 52-59 - Francisco Gutiérrez, Sven Charleer, Robin De Croon

, Nyi Nyi Htun
, Gerd Goetschalckx, Katrien Verbert
:
Explaining and exploring job recommendations: a user-driven approach for interacting with knowledge-based job recommender systems. 60-68 - Jaron Harambam

, Dimitrios Bountouridis, Mykola Makhortykh
, Joris Van Hoboken:
Designing for the better by taking users into account: a qualitative evaluation of user control mechanisms in (news) recommender systems. 69-77 - Aidmar Wainakh, Tim Grube, Jörg Daubert, Max Mühlhäuser:

Efficient privacy-preserving recommendations based on social graphs. 78-86 - Amar Saini, Florin Rusu, Andrew Johnston:

PrivateJobMatch: a privacy-oriented deferred multi-match recommender system for stable employment. 87-95 - Daniel Herzog, Wolfgang Wörndl:

User-centered evaluation of strategies for recommending sequences of points of interest to groups. 96-100
Deep learning for recommender systems
- Maurizio Ferrari Dacrema

, Paolo Cremonesi, Dietmar Jannach:
Are we really making much progress? A worrying analysis of recent neural recommendation approaches. 101-109 - Abdul-Saboor Sheikh, Romain Guigourès, Evgenii Koriagin, Yuen King Ho, Reza Shirvany, Roland Vollgraf, Urs Bergmann:

A deep learning system for predicting size and fit in fashion e-commerce. 110-118 - Ugo Tanielian, Flavian Vasile:

Relaxed softmax for PU learning. 119-127 - Murium Iqbal, Kamelia Aryafar, Timothy Anderton:

Style conditioned recommendations. 128-136 - Ga Wu

, Kai Luo, Scott Sanner, Harold Soh:
Deep language-based critiquing for recommender systems. 137-145 - Priit Järv:

Predictability limits in session-based next item recommendation. 146-150
Recommendation in advertising, promotions, intent and search
- Mesut Kaya

, Derek G. Bridge:
A comparison of calibrated and intent-aware recommendations. 151-159 - Rahul Makhijani, Shreya Chakrabarti, Dale Struble, Yi Liu:

LORE: a large-scale offer recommendation engine with eligibility and capacity constraints. 160-168 - Tongwen Huang, Zhiqi Zhang, Junlin Zhang:

FiBiNET: combining feature importance and bilinear feature interaction for click-through rate prediction. 169-177 - Karan Aggarwal, Pranjul Yadav, S. Sathiya Keerthi:

Domain adaptation in display advertising: an application for partner cold-start. 178-186 - Sofia Ira Ktena, Alykhan Tejani, Lucas Theis, Pranay Kumar Myana, Deepak Dilipkumar, Ferenc Huszár, Steven Yoo, Wenzhe Shi:

Addressing delayed feedback for continuous training with neural networks in CTR prediction. 187-195 - Lakshmi Ramachandran, Uma Murthy:

Ghosting: contextualized inline query completion in large scale retail search. 196-200
Application of recommenders in personal needs
- Felipe Soares Da Costa

, Peter Dolog
:
Collective embedding for neural context-aware recommender systems. 201-209 - Meng Wu, Ying Zhu, Qilian Yu, Bhargav Rajendra, Yunqi Zhao, Navid Aghdaie, Kazi A. Zaman:

A recommender system for heterogeneous and time sensitive environment. 210-218 - James Neve, Ivan Palomares:

Latent factor models and aggregation operators for collaborative filtering in reciprocal recommender systems. 219-227 - Oren Barkan, Noam Koenigstein

, Eylon Yogev, Ori Katz:
CB2CF: a neural multiview content-to-collaborative filtering model for completely cold item recommendations. 228-236 - Bruno L. Pereira, Alberto Ueda, Gustavo Penha, Rodrygo L. T. Santos

, Nivio Ziviani:
Online learning to rank for sequential music recommendation. 237-245 - Jakim Berndsen, Barry Smyth, Aonghus Lawlor

:
Pace my race: recommendations for marathon running. 246-250
Algorithms: Large-scale, constraints and evaluation
- Olivier Jeunen, Koen Verstrepen, Bart Goethals

:
Efficient similarity computation for collaborative filtering in dynamic environments. 251-259 - Athanasios N. Nikolakopoulos, Dimitris Berberidis, George Karypis

, Georgios B. Giannakis
:
Personalized diffusions for top-n recommendation. 260-268 - Xinyang Yi, Ji Yang, Lichan Hong, Derek Zhiyuan Cheng, Lukasz Heldt, Aditee Kumthekar, Zhe Zhao, Li Wei, Ed H. Chi:

Sampling-bias-corrected neural modeling for large corpus item recommendations. 269-277 - Hongyi Wen, Longqi Yang, Deborah Estrin:

Leveraging post-click feedback for content recommendations. 278-286 - Gal Lavee, Noam Koenigstein

, Oren Barkan:
When actions speak louder than clicks: a combined model of purchase probability and long-term customer satisfaction. 287-295 - Masahiro Sato, Janmajay Singh

, Sho Takemori, Takashi Sonoda, Qian Zhang, Tomoko Ohkuma:
Uplift-based evaluation and optimization of recommenders. 296-304
Using side-information and user attributes and cold-start in recommender algorithms
- Wenqi Fan

, Yao Ma, Dawei Yin, Jianping Wang, Jiliang Tang, Qing Li
:
Deep social collaborative filtering. 305-313 - Ahmed Rashed, Josif Grabocka, Lars Schmidt-Thieme

:
Attribute-aware non-linear co-embeddings of graph features. 314-321 - Konstantina Christakopoulou, Arindam Banerjee:

Adversarial attacks on an oblivious recommender. 322-330 - Evgeny Frolov, Ivan V. Oseledets:

HybridSVD: when collaborative information is not enough. 331-339 - Ehtsham Elahi, Wei Wang, Dave Ray, Aish Fenton, Tony Jebara:

Variational low rank multinomials for collaborative filtering with side-information. 340-347 - Mehmet Aktukmak, Yasin Yilmaz, Ismail Uysal:

Quick and accurate attack detection in recommender systems through user attributes. 348-352
Short papers with poster presentation
- Oren Sar Shalom, Guy Uziel, Amir Kantor:

A generative model for review-based recommendations. 353-357 - Javier Sanz-Cruzado

, Pablo Castells
, Esther López:
A simple multi-armed nearest-neighbor bandit for interactive recommendation. 358-362 - Huiyuan Chen, Jing Li

:
Adversarial tensor factorization for context-aware recommendation. 363-367 - Mohammed Khwaja, Miquel Ferrer, Jesús Omana Iglesias

, A. Aldo Faisal
, Aleksandar Matic:
Aligning daily activities with personality: towards a recommender system for improving wellbeing. 368-372 - Shan Ouyang, Lin Li

, Weike Pan, Zhong Ming:
Asymmetric Bayesian personalized ranking for one-class collaborative filtering. 373-377 - Pablo Sánchez

, Alejandro Bellogín
:
Attribute-based evaluation for recommender systems: incorporating user and item attributes in evaluation metrics. 378-382 - Cataldo Musto

, Gaetano Rossiello
, Marco de Gemmis, Pasquale Lops, Giovanni Semeraro
:
Combining text summarization and aspect-based sentiment analysis of users' reviews to justify recommendations. 383-387 - Tianshu Lyu, Fei Sun

, Peng Jiang, Wenwu Ou, Yan Zhang:
Compositional network embedding for link prediction. 388-392 - Vladimir Araujo

, Felipe Rios, Denis Parra
:
Data mining for item recommendation in MOBA games. 393-397 - Kosetsu Tsukuda, Masataka Goto

:
DualDiv: diversifying items and explanation styles in explainable hybrid recommendation. 398-402 - Daeryong Kim, Bongwon Suh:

Enhancing VAEs for collaborative filtering: flexible priors & gating mechanisms. 403-407 - Snorre S. Frid-Nielsen

:
Find my next job: labor market recommendations using administrative big data. 408-412 - Kojiro Iizuka, Takeshi Yoneda, Yoshifumi Seki:

Greedy optimized multileaving for personalization. 413-417 - Shaunak Mishra, Manisha Verma, Jelena Gligorijevic:

Guiding creative design in online advertising. 418-422 - Helma Torkamaan, Catalin-Mihai Barbu, Jürgen Ziegler:

How can they know that?: a study of factors affecting the creepiness of recommendations. 423-427 - Pan Li, Alexander Tuzhilin

:
Latent multi-criteria ratings for recommendations. 428-431 - Rocío Cañamares, Marcos Redondo, Pablo Castells

:
Multi-armed recommender system bandit ensembles. 432-436 - Timothy Schmeier, Joseph Chisari, Sam Garrett, Brett Vintch:

Music recommendations in hyperbolic space: an application of empirical bayes and hierarchical poincaré embeddings. 437-441 - Tobias Eichinger, Felix Beierle, Robin Papke, Lucas Rebscher, Hong Chinh Tran, Magdalena Trzeciak:

On gossip-based information dissemination in pervasive recommender systems. 442-446 - Vito Walter Anelli

, Tommaso Di Noia, Eugenio Di Sciascio, Claudio Pomo
, Azzurra Ragone
:
On the discriminative power of hyper-parameters in cross-validation and how to choose them. 447-451 - Huifeng Guo, Jinkai Yu, Qing Liu, Ruiming Tang

, Yuzhou Zhang:
PAL: a position-bias aware learning framework for CTR prediction in live recommender systems. 452-456 - Erika Duriakova, Elias Z. Tragos, Barry Smyth, Neil Hurley, Francisco J. Peña, Panagiotis Symeonidis, James Geraci, Aonghus Lawlor

:
PDMFRec: a decentralised matrix factorisation with tunable user-centric privacy. 457-461 - Malte Ludewig, Noemi Mauro, Sara Latifi, Dietmar Jannach:

Performance comparison of neural and non-neural approaches to session-based recommendation. 462-466 - Weiwen Liu

, Jun Guo
, Nasim Sonboli, Robin Burke
, Shengyu Zhang:
Personalized fairness-aware re-ranking for microlending. 467-471 - Adi Makmal, Jonathan Ephrath, Hilik Berezin, Liron I. Allerhand, Nir Nice, Noam Koenigstein

:
Pick & merge: an efficient item filtering scheme for Windows store recommendations. 472-476 - Adrien Mogenet, Tuan-Anh Nguyen Pham, Masahiro Kazama, Jialin Kong:

Predicting online performance of job recommender systems with offline evaluation. 477-480 - Renzhong Wang

, Dragomir Yankov, Michael R. Evans, Senthil Palanisamy, Siddhartha Arora, Wei Wu:
Predicting user routines with masked dilated convolutions. 481-485 - Pigi Kouki, Ilias Fountalis, Nikolaos Vasiloglou, Nian Yan, Unaiza Ahsan, Khalifeh Al Jadda, Huiming Qu:

Product collection recommendation in online retail. 486-490 - Bichen Shi, Makbule Gulcin Ozsoy

, Neil Hurley, Barry Smyth, Elias Z. Tragos, James Geraci, Aonghus Lawlor
:
PyRecGym: a reinforcement learning gym for recommender systems. 491-495 - Emanuel Lacic, Markus Reiter-Haas

, Tomislav Duricic, Valentin Slawicek, Elisabeth Lex:
Should we embed?: a study on the online performance of utilizing embeddings for real-time job recommendations. 496-500 - Sandy Manolios

, Alan Hanjalic
, Cynthia C. S. Liem
:
The influence of personal values on music taste: towards value-based music recommendations. 501-505 - Weijie Jiang

, Zachary A. Pardos:
Time slice imputation for personalized goal-based recommendation in higher education. 506-510 - Arthur Câmara

, Rodrygo L. T. Santos
:
Traversing semantically annotated queries for task-oriented query recommendation. 511-515 - Malte Ludewig, Dietmar Jannach:

User-centric evaluation of session-based recommendations for an automated radio station. 516-520
Novel uses of recommenders
- Abdulla Al-Qawasmeh, Ankan Saha:

Using AI to build communities around interests on LinkedIn. 521 - Ana Rita Magalhães:

The trinity of luxury fashion recommendations: data, experts and experimentation. 522 - Vito Claudio Ostuni:

"Just play something awesome": the personalization powering voice interactions at Pandora. 523 - Juergen Luettin

, Susanne Rothermel, Mark Andrew:
Future of in-vehicle recommendation systems @ Bosch. 524 - Sandhya Sachidanandan, Richard Luong, Emil S. Joergensen:

Designer-driven add-to-cart recommendations. 525
Novel approaches to recommenders
- Sasank Channapragada, Harshit Syal, Ibrahim Maali:

Groupon finally explains why we showed those offers. 526 - Oguz Semerci, Alois Gruson, Catherine M. Edwards, Ben Lacker, Clay Gibson, Vladan Radosavljevic:

Homepage personalization at spotify. 527 - Khalifeh Al Jadda:

Recommendation in home improvement industry, challenges and opportunities. 528 - Maria Panteli:

Recommendation systems compliant with legal and editorial policies: the BBC+ app journey. 529 - Yuxi Zhang, Kexin Xie:

Incorporating intent propensities in personalized next best action recommendation. 530 - Sanghamitra Deb:

Driving content recommendations by building a knowledge base using weak supervision and transfer learning. 531
Demonstrations
- Philipp Scharpf, Ian Mackerracher, Moritz Schubotz, Jöran Beel, Corinna Breitinger, Bela Gipp:

AnnoMath TeX - a formula identifier annotation recommender system for STEM documents. 532-533 - Jöran Beel, Alan Griffin, Conor O'Shea:

Darwin & Goliath: a white-label recommender-system as-a-service with automated algorithm-selection. 534-535 - Yu-Che Tsai, Chih-Yao Chen, Shao-Lun Ma, Pei-Chi Wang, You-Jia Chen, Yu-Chieh Chang, Cheng-Te Li:

FineNet: a joint convolutional and recurrent neural network model to forecast and recommend anomalous financial items. 536-537 - Sandy Moens, Olivier Jeunen, Bart Goethals

:
Interactive evaluation of recommender systems with SNIPER: an episode mining approach. 538-539 - Oznur Alkan, Massimiliano Mattetti, Elizabeth M. Daly, Adi Botea, Inge Vejsbjerg:

IRF: interactive recommendation through dialogue. 540-541 - Scott Graham, Jun-Ki Min, Tao Wu:

Microsoft recommenders: tools to accelerate developing recommender systems. 542-543 - Ashlee Milton, Michael Green, Adam Keener, Joshua Ames, Michael D. Ekstrand

, Maria Soledad Pera
:
StoryTime: eliciting preferences from children for book recommendations. 544-545 - Benedikt Loepp

, Jürgen Ziegler:
Towards interactive recommending in model-based collaborative filtering systems. 546-547
Workshops, challenge, and late-breaking results
- Gediminas Adomavicius, Konstantin Bauman

, Bamshad Mobasher
, Francesco Ricci
, Alexander Tuzhilin
, Moshe Unger:
Workshop on context-aware recommender systems. 548-549 - Marijn Koolen

, Toine Bogers, Bamshad Mobasher
, Alexander Tuzhilin
:
Third workshop on recommendation in complex scenarios (ComplexRec 2019). 550-551 - Shatha Jaradat, Nima Dokoohaki

, Humberto Jesús Corona Pampín, Reza Shirvany:
Workshop on recommender systems in fashion (fashionXrecsys2019). 552-553 - David Elsweiler, Bernd Ludwig, Alan Said, Hanna Schäfer

, Helma Torkamaan, Christoph Trattner:
Fourth international workshop on health recommender systems (HealthRecSys 2019). 554-555 - Oren Sar Shalom, Dietmar Jannach, Ido Guy:

First workshop on the impact of recommender systems at ACM RecSys 2019. 556-557 - Özlem Özgöbek

, Benjamin Kille, Jon Atle Gulla, Andreas Lommatzsch:
The 7th international workshop on news recommendation and analytics (INRA 2019). 558-559 - Peter Brusilovsky

, Marco de Gemmis, Alexander Felfernig, Pasquale Lops, John O'Donovan, Giovanni Semeraro
, Martijn C. Willemsen
:
RecSys '19 joint workshop on interfaces and human decision making for recommender systems. 560-561 - João Vinagre

, Alípio Mário Jorge
, Albert Bifet
, Marie Al-Ghossein:
ORSUM 2019 2nd workshop on online recommender systems and user modeling. 562-563 - Julia Neidhardt, Wolfgang Wörndl, Tsvi Kuflik, Markus Zanker, Catalin-Mihai Barbu:

RecTour 2019: workshop on recommenders in tourism. 564-565 - Robin Burke

, Himan Abdollahpouri, Edward C. Malthouse, K. P. Thai, Yongfeng Zhang:
Recommendation in multistakeholder environments. 566-567 - Thorsten Joachims, Maria Dimakopoulou, Adith Swaminathan, Yves Raimond, Olivier Koch, Flavian Vasile:

REVEAL 2019: closing the loop with the real world: reinforcement and robust estimators for recommendation. 568-569 - Peter Knees, Yashar Deldjoo

, Farshad Bakhshandegan Moghaddam, Jens Adamczak, Gerard Paul Leyson, Philipp Monreal:
RecSys challenge 2019: session-based hotel recommendations. 570-571 - Marko Tkalcic, Maria Soledad Pera

:
ACM RecSys'19 late-breaking results (posters). 572-573
Tutorials
- Dorota Glowacka:

Bandit algorithms in recommender systems. 574-575 - Michael D. Ekstrand

, Robin Burke
, Fernando Diaz
:
Fairness and discrimination in recommendation and retrieval. 576-577 - Yong Zheng

:
Multi-stakeholder recommendations: case studies, methods and challenges. 578-579 - Rishabh Mehrotra, Benjamin A. Carterette:

Recommendations in a marketplace. 580-581 - Chih-Ming Chen, Ting-Hsiang Wang, Chuan-Ju Wang, Ming-Feng Tsai:

SMORe: modularize graph embedding for recommendation. 582-583 - Omprakash Sonie:

Concept to code: deep learning for multitask recommendation. 584-585
Doctoral symposium
- Andres Ferraro

:
Music cold-start and long-tail recommendation: bias in deep representations. 586-590 - Miroslav Rac:

User's activity driven short-term context inference. 591-595 - Olivier Jeunen:

Revisiting offline evaluation for implicit-feedback recommender systems. 596-600 - Pablo Sánchez

:
Exploiting contextual information for recommender systems oriented to tourism. 601-605 - Yayu Zhou

:
Recommender systems for contextually-aware, versioned items. 606-610 - Yu Liang

:
Recommender system for developing new preferences and goals. 611-615

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














