


default search action
MLHC 2020: Virtual Event, Durham, NC, USA
- Finale Doshi-Velez, Jim Fackler, Ken Jung, David C. Kale, Rajesh Ranganath, Byron C. Wallace, Jenna Wiens:

Proceedings of the Machine Learning for Healthcare Conference, MLHC 2020, 7-8 August 2020, Virtual Event, Durham, NC, USA. Proceedings of Machine Learning Research 126, PMLR 2020 - Uri Shaham, Tom Zahavy, Cesar Caraballo, Shiwani Mahajan, Daisy Massey, Harlan M. Krumholz:

Learning to Ask Medical Questions using Reinforcement Learning. 2-26 - Yuan Luo, Chengsheng Mao:

ScanMap: Supervised Confounding Aware Non-negative Matrix Factorization for Polygenic Risk Modeling. 27-45 - Stefan Hegselmann, Thomas Volkert, Hendrik Ohlenburg, Antje Gottschalk, Martin Dugas, Christian Ertmer:

An Evaluation of the Doctor-Interpretability of Generalized Additive Models with Interactions. 46-79 - Diyuan Lu, Sebastian Bauer, Valentin Neubert, Lara Sophie Costard, Felix Rosenow, Jochen Triesch:

Towards Early Diagnosis of Epilepsy from EEG Data. 80-96 - Lida Zhang, Nathan C. Hurley, Bassem Ibrahim, Erica S. Spatz, Harlan M. Krumholz, Roozbeh Jafari, Bobak Jack Mortazavi:

Developing Personalized Models of Blood Pressure Estimation from Wearable Sensors Data Using Minimally-trained Domain Adversarial Neural Networks. 97-120 - Hari Bandi, Dimitris Bertsimas:

Optimizing Influenza Vaccine Composition: From Predictions to Prescriptions. 121-142 - Aakash Kaku, Avinash Parnandi, Anita Venkatesan, Natasha Pandit, Heidi M. Schambra, Carlos Fernandez-Granda:

Towards data-driven stroke rehabilitation via wearable sensors and deep learning. 143-171 - Andrew C. Miller, Nicholas J. Foti, Emily B. Fox:

Learning Insulin-Glucose Dynamics in the Wild. 172-197 - James Mullenbach, Jordan Swartz, T. Greg McKelvey, Hui Dai, David A. Sontag:

Knowledge Base Completion for Constructing Problem-Oriented Medical Records. 198-222 - Matthew Engelhard, Samuel Berchuck, Joshua D'Arcy, Ricardo Henao:

Neural Conditional Event Time Models. 223-244 - Justin R. Lovelace, Nathan C. Hurley, Adrian D. Haimovich, Bobak J. Mortazavi:

Dynamically Extracting Outcome-Specific Problem Lists from Clinical Notes with Guided Multi-Headed Attention. 245-270 - Lovedeep Gondara, Ke Wang:

Differentially Private Survival Function Estimation. 271-291 - Mijung Kim, Ho-min Park, Jae Yoon Kim, Seong Hwan Kim, Sofie Hoeke, Wesley De Neve:

MRI-based Diagnosis of Rotator Cuff Tears using Deep Learning and Weighted Linear Combinations. 292-308 - Kristen A. Severson, Lana M. Chahine, Luba Smolensky, Kenney Ng, Jianying Hu, Soumya Ghosh:

Personalized Input-Output Hidden Markov Models for Disease Progression Modeling. 309-330 - Asif Rahman, Yale Chang, Bryan Conroy, Minnan Xu-Wilson:

Phenotyping with Prior Knowledge using Patient Similarity. 331-351 - Srikesh Arunajadai, Lulu Lee, Tom Haskell:

Addressing Sample Size Challenges in Linked Data Through Data Fusion. 352-375 - Riddhiman Adib, Paul M. Griffin, Sheikh Iqbal Ahamed, Mohammad Adibuzzaman:

A Causally Formulated Hazard Ratio Estimation through Backdoor Adjustment on Structural Causal Model. 376-396 - Athanasios Demetri Pananos, Daniel J. Lizotte:

Comparisons Between Hamiltonian Monte Carlo and Maximum A Posteriori For A Bayesian Model For Apixaban Induction Dose & Dose Personalization. 397-417 - Renyu Zhang, Christopher Weber, Robert L. Grossman, Aly A. Khan:

Evaluating and interpreting caption prediction for histopathology images. 418-435 - Shijing Si, Rui Wang, Jedrek Wosik, Hao Zhang, David Dov, Guoyin Wang, Lawrence Carin:

Students Need More Attention: BERT-based Attention Model for Small Data with Application to Automatic Patient Message Triage. 436-456 - Samaneh Nasiri, Gari D. Clifford:

Attentive Adversarial Network for Large-Scale Sleep Staging. 457-478 - Dmitry Yu. Isaev, Dmitry Tchapyjnikov, C. Michael Cotten, David Tanaka, Natalia Martínez, Martín Bertrán, Guillermo Sapiro, David E. Carlson:

Attention-Based Network for Weak Labels in Neonatal Seizure Detection. 479-507 - Ian Fox, Joyce M. Lee, Rodica Pop-Busui, Jenna Wiens:

Deep Reinforcement Learning for Closed-Loop Blood Glucose Control. 508-536 - George H. Chen:

Deep Kernel Survival Analysis and Subject-Specific Survival Time Prediction Intervals. 537-565 - Dongyu Zhang

, Jidapa Thadajarassiri, Cansu Sen, Elke A. Rundensteiner:
Time-Aware Transformer-based Network for Clinical Notes Series Prediction. 566-588 - Sonali Parbhoo, Mario Wieser, Volker Roth, Finale Doshi-Velez:

Transfer Learning from Well-Curated to Less-Resourced Populations with HIV. 589-609 - Benjamin Schloss, Sandeep Konam:

Towards an Automated SOAP Note: Classifying Utterances from Medical Conversations. 610-631 - Denis Jered McInerney, Borna Dabiri, Anne-Sophie Touret, Geoffrey S. Young, Jan-Willem van de Meent, Byron C. Wallace:

Query-Focused EHR Summarization to Aid Imaging Diagnosis. 632-659 - Yifeng Tao

, Shuangxia Ren, Michael Q. Ding, Russell Schwartz, Xinghua Lu:
Predicting Drug Sensitivity of Cancer Cell Lines via Collaborative Filtering with Contextual Attention. 660-684 - Tom Beer, Bar Eini-Porat, Sebastian Goodfellow, Danny Eytan, Uri Shalit:

Using deep networks for scientific discovery in physiological signals. 685-709 - George-Alexandru Adam, Chun-Hao Kingsley Chang, Benjamin Haibe-Kains, Anna Goldenberg:

Hidden Risks of Machine Learning Applied to Healthcare: Unintended Feedback Loops Between Models and Future Data Causing Model Degradation. 710-731 - Szu-Yeu Hu, Shuhang Wang, Wei-Hung Weng, Jingchao Wang, Xiaohong Wang, Arinc Ozturk, Quan Li, Viksit Kumar, Anthony E. Samir:

Self-Supervised Pretraining with DICOM metadata in Ultrasound Imaging. 732-749 - Sarah Jabbour, David Fouhey, Ella Kazerooni, Michael W. Sjoding, Jenna Wiens:

Deep Learning Applied to Chest X-Rays: Exploiting and Preventing Shortcuts. 750-782 - Shems Saleh, William Boag, Lauren Erdman, Tristan Naumann:

Clinical Collabsheets: 53 Questions to Guide a Clinical Collaboration. 783-812 - Oswald Barral, Hyeju Jang, Sally Newton-Mason, Sheetal Shajan, Thomas Soroski, Giuseppe Carenini, Cristina Conati, Thalia Shoshana Field:

Non-Invasive Classification of Alzheimer's Disease Using Eye Tracking and Language. 813-841 - Divya Gopinath, Monica Agrawal, Luke S. Murray, Steven Horng, David R. Karger, David A. Sontag:

Fast, Structured Clinical Documentation via Contextual Autocomplete. 842-870 - Hadia Hameed, Samantha Kleinberg:

Comparing Machine Learning Techniques for Blood Glucose Forecasting Using Free-living and Patient Generated Data. 871-894 - Do June Min, Verónica Pérez-Rosas, Shihchen Kuo, William H. Herman, Rada Mihalcea:

UPSTAGE: Unsupervised Context Augmentation for Utterance Classification in Patient-Provider Communication. 895-912 - Matthew B. A. McDermott, Tzu-Ming Harry Hsu, Wei-Hung Weng, Marzyeh Ghassemi, Peter Szolovits:

CheXpert++: Approximating the CheXpert Labeler for Speed, Differentiability, and Probabilistic Output. 913-927 - Monica Agrawal, Chloe O'Connell, Yasmin Fatemi, Ariel Levy, David A. Sontag:

Robust Benchmarking for Machine Learning of Clinical Entity Extraction. 928-949 - Bret Nestor, Liam G. McCoy, Amol Verma, Chloé Pou-Prom, Joshua Murray, Sebnem Kuzulugil, David Dai, Muhammad Mamdani, Anna Goldenberg, Marzyeh Ghassemi:

Preparing a Clinical Support Model for Silent Mode in General Internal Medicine. 950-972

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














