


default search action
31st ICML 2014: Beijing, China
- Proceedings of the 31th International Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014. JMLR Workshop and Conference Proceedings 32, JMLR.org 2014

Cycle 1 Papers
- Rajhans Samdani, Kai-Wei Chang, Dan Roth:

A Discriminative Latent Variable Model for Online Clustering. 1-9 - Krikamol Muandet, Kenji Fukumizu, Bharath K. Sriperumbudur, Arthur Gretton, Bernhard Schölkopf:

Kernel Mean Estimation and Stein Effect. 10-18 - Greg Ver Steeg, Aram Galstyan, Fei Sha, Simon DeDeo:

Demystifying Information-Theoretic Clustering. 19-27 - Zongzhang Zhang, David Hsu, Wee Sun Lee:

Covering Number for Efficient Heuristic-based POMDP Planning. 28-36 - Wenzhuo Yang, Melvyn Sim, Huan Xu:

The Coherent Loss Function for Classification. 37-45 - Wenliang Zhong, James Tin-Yau Kwok:

Fast Stochastic Alternating Direction Method of Multipliers. 46-54 - Yuxin Chen, Hiroaki Shioi, Cesar Fuentes Montesinos, Lian Pin Koh, Serge A. Wich, Andreas Krause:

Active Detection via Adaptive Submodularity. 55-63 - Shai Shalev-Shwartz, Tong Zhang:

Accelerated Proximal Stochastic Dual Coordinate Ascent for Regularized Loss Minimization. 64-72 - Qihang Lin, Lin Xiao:

An Adaptive Accelerated Proximal Gradient Method and its Homotopy Continuation for Sparse Optimization. 73-81 - Pedro H. O. Pinheiro, Ronan Collobert:

Recurrent Convolutional Neural Networks for Scene Labeling. 82-90 - Ping Ma, Michael W. Mahoney, Bin Yu:

A Statistical Perspective on Algorithmic Leveraging. 91-99 - Aditya Gopalan, Shie Mannor, Yishay Mansour:

Thompson Sampling for Complex Online Problems. 100-108 - Souhaib Ben Taieb, Rob J. Hyndman:

Boosting multi-step autoregressive forecasts. 109-117 - Arun Rajkumar, Shivani Agarwal:

A Statistical Convergence Perspective of Algorithms for Rank Aggregation from Pairwise Data. 118-126 - Timothy A. Mann, Shie Mannor:

Scaling Up Approximate Value Iteration with Options: Better Policies with Fewer Iterations. 127-135 - Odalric-Ambrym Maillard, Shie Mannor:

Latent Bandits. 136-144 - Trung V. Nguyen, Edwin V. Bonilla:

Fast Allocation of Gaussian Process Experts. 145-153 - Siddharth Gopal, Yiming Yang:

Von Mises-Fisher Clustering Models. 154-162 - Frédéric Chazal, Marc Glisse, Catherine Labruère, Bertrand Michel:

Convergence rates for persistence diagram estimation in Topological Data Analysis. 163-171 - Fabian Gieseke, Justin Heinermann, Cosmin E. Oancea, Christian Igel:

Buffer k-d Trees: Processing Massive Nearest Neighbor Queries on GPUs. 172-180 - Anoop Korattikara Balan, Yutian Chen, Max Welling:

Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget. 181-189 - Jian Tang, Zhaoshi Meng, XuanLong Nguyen, Qiaozhu Mei, Ming Zhang:

Understanding the Limiting Factors of Topic Modeling via Posterior Contraction Analysis. 190-198 - Maxim Rabinovich, David M. Blei:

The Inverse Regression Topic Model. 199-207 - Stanley H. Chan, Edoardo M. Airoldi:

A Consistent Histogram Estimator for Exchangeable Graph Models. 208-216 - Benjamin Letham, Wei Sun, Anshul Sheopuri:

Latent Variable Copula Inference for Bundle Pricing from Retail Transaction Data. 217-225 - Haipeng Luo, Robert E. Schapire:

Towards Minimax Online Learning with Unknown Time Horizon. 226-234 - Andrew C. Miller, Luke Bornn, Ryan P. Adams, Kirk Goldsberry:

Factorized Point Process Intensities: A Spatial Analysis of Professional Basketball. 235-243 - Aaditya Ramdas, Javier Peña:

Margins, Kernels and Non-linear Smoothed Perceptrons. 244-252 - Shike Mei, Jun Zhu, Jerry Zhu:

Robust RegBayes: Selectively Incorporating First-Order Logic Domain Knowledge into Bayesian Models. 253-261 - Mehryar Mohri, Andres Muñoz Medina:

Learning Theory and Algorithms for revenue optimization in second price auctions with reserve. 262-270 - Stefano Ermon, Carla P. Gomes, Ashish Sabharwal, Bart Selman:

Low-density Parity Constraints for Hashing-Based Discrete Integration. 271-279 - Yevgeny Seldin, Peter L. Bartlett, Koby Crammer, Yasin Abbasi-Yadkori:

Prediction with Limited Advice and Multiarmed Bandits with Paid Observations. 280-287 - Tien-Vu Nguyen, Dinh Quoc Phung, XuanLong Nguyen, Svetha Venkatesh, Hung Bui:

Bayesian Nonparametric Multilevel Clustering with Group-Level Contexts. 288-296 - Rémi Lajugie, Francis R. Bach, Sylvain Arlot:

Large-Margin Metric Learning for Constrained Partitioning Problems. 297-305 - Justin Solomon, Raif M. Rustamov, Leonidas J. Guibas, Adrian Butscher:

Wasserstein Propagation for Semi-Supervised Learning. 306-314 - Aonan Zhang, Jun Zhu, Bo Zhang:

Max-Margin Infinite Hidden Markov Models. 315-323 - Yong Liu, Shali Jiang, Shizhong Liao:

Efficient Approximation of Cross-Validation for Kernel Methods using Bouligand Influence Function. 324-332 - Shashank Singh, Barnabás Póczos:

Generalized Exponential Concentration Inequality for Renyi Divergence Estimation. 333-341 - Shang-Tse Chen, Hsuan-Tien Lin, Chi-Jen Lu:

Boosting with Online Binary Learners for the Multiclass Bandit Problem. 342-350 - Tasuku Soma, Naonori Kakimura, Kazuhiro Inaba, Ken-ichi Kawarabayashi:

Optimal Budget Allocation: Theoretical Guarantee and Efficient Algorithm. 351-359 - Hossein Azari Soufiani, David C. Parkes, Lirong Xia:

Computing Parametric Ranking Models via Rank-Breaking. 360-368 - Yasin Abbasi-Yadkori, Peter L. Bartlett, Varun Kanade:

Tracking Adversarial Targets. 369-377 - Tianlin Shi, Jun Zhu:

Online Bayesian Passive-Aggressive Learning. 378-386 - David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, Martin A. Riedmiller:

Deterministic Policy Gradient Algorithms. 387-395 - Wenzhao Lian, Vinayak A. Rao, Brian Eriksson, Lawrence Carin:

Modeling Correlated Arrival Events with Latent Semi-Markov Processes. 396-404 - Rémi Bardenet, Arnaud Doucet, Christopher C. Holmes:

Towards scaling up Markov chain Monte Carlo: an adaptive subsampling approach. 405-413 - Ferdinando Cicalese, Eduardo Sany Laber, Aline Medeiros Saettler:

Diagnosis determination: decision trees optimizing simultaneously worst and expected testing cost. 414-422 - Chun-Liang Li, Hsuan-Tien Lin:

Condensed Filter Tree for Cost-Sensitive Multi-Label Classification. 423-431 - Francesco Orabona, Tamir Hazan, Anand D. Sarwate, Tommi S. Jaakkola:

On Measure Concentration of Random Maximum A-Posteriori Perturbations. 432-440 - Philip Thomas:

Bias in Natural Actor-Critic Algorithms. 441-448 - François Denis, Mattias Gybels, Amaury Habrard:

Dimension-free Concentration Bounds on Hankel Matrices for Spectral Learning. 449-457 - Zhixing Li, Siqiang Wen, Juanzi Li, Peng Zhang, Jie Tang:

On Modelling Non-linear Topical Dependencies. 458-466 - Benigno Uria, Iain Murray, Hugo Larochelle:

A Deep and Tractable Density Estimator. 467-475 - Prateek Jain, Abhradeep Guha Thakurta:

(Near) Dimension Independent Risk Bounds for Differentially Private Learning. 476-484 - Jiyan Yang, Vikas Sindhwani, Haim Avron, Michael W. Mahoney:

Quasi-Monte Carlo Feature Maps for Shift-Invariant Kernels. 485-493 - Nikos Karampatziakis, Paul Mineiro:

Discriminative Features via Generalized Eigenvectors. 494-502 - Ji Liu, Jieping Ye, Ryohei Fujimaki:

Forward-Backward Greedy Algorithms for General Convex Smooth Functions over A Cardinality Constraint. 503-511 - Travis Dick, András György, Csaba Szepesvári:

Online Learning in Markov Decision Processes with Changing Cost Sequences. 512-520 - Richard Combes, Alexandre Proutière:

Unimodal Bandits: Regret Lower Bounds and Optimal Algorithms. 521-529 - Arun Shankar Iyer, J. Saketha Nath, Sunita Sarawagi:

Maximum Mean Discrepancy for Class Ratio Estimation: Convergence Bounds and Kernel Selection. 530-538 - Azadeh Khaleghi, Daniil Ryabko:

Asymptotically consistent estimation of the number of change points in highly dependent time series. 539-547 - Uri Shalit, Gal Chechik:

Coordinate-descent for learning orthogonal matrices through Givens rotations. 548-556 - Anshumali Shrivastava, Ping Li:

Densifying One Permutation Hashing via Rotation for Fast Near Neighbor Search. 557-565 - Cho-Jui Hsieh, Si Si, Inderjit S. Dhillon:

A Divide-and-Conquer Solver for Kernel Support Vector Machines. 566-574 - Cho-Jui Hsieh, Peder A. Olsen:

Nuclear Norm Minimization via Active Subspace Selection. 575-583 - Sanjeev Arora, Aditya Bhaskara, Rong Ge, Tengyu Ma:

Provable Bounds for Learning Some Deep Representations. 584-592 - Hsiang-Fu Yu, Prateek Jain, Purushottam Kar, Inderjit S. Dhillon:

Large-scale Multi-label Learning with Missing Labels. 593-601 - Rashish Tandon, Pradeep Ravikumar:

Learning Graphs with a Few Hubs. 602-610 - Alexandre Lacoste, Mario Marchand, François Laviolette, Hugo Larochelle:

Agnostic Bayesian Learning of Ensembles. 611-619 - Samaneh Azadi, Suvrit Sra:

Towards an optimal stochastic alternating direction method of multipliers. 620-628 - Shiwei Lan, Bo Zhou, Babak Shahbaba:

Spherical Hamiltonian Monte Carlo for Constrained Target Distributions. 629-637 - Monir Hajiaghayi, Bonnie Kirkpatrick, Liangliang Wang, Alexandre Bouchard-Côté:

Efficient Continuous-Time Markov Chain Estimation. 638-646 - Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman

, Ning Zhang, Eric Tzeng, Trevor Darrell:
DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition. 647-655 - Dani Yogatama, Noah A. Smith:

Making the Most of Bag of Words: Sentence Regularization with Alternating Direction Method of Multipliers. 656-664 - Misha Denil, David Matheson, Nando de Freitas:

Narrowing the Gap: Random Forests In Theory and In Practice. 665-673 - Yudong Chen, Srinadh Bhojanapalli, Sujay Sanghavi, Rachel A. Ward:

Coherent Matrix Completion. 674-682 - David I. Inouye, Pradeep Ravikumar, Inderjit S. Dhillon:

Admixture of Poisson MRFs: A Topic Model with Word Dependencies. 683-691 - Harm van Seijen, Richard S. Sutton:

True Online TD(lambda). 692-700 - Si Si, Cho-Jui Hsieh, Inderjit S. Dhillon:

Memory Efficient Kernel Approximation. 701-709 - Amirmohammad Rooshenas, Daniel Lowd:

Learning Sum-Product Networks with Direct and Indirect Variable Interactions. 710-718 - Jascha Sohl-Dickstein, Mayur Mudigonda, Michael Robert DeWeese:

Hamiltonian Monte Carlo Without Detailed Balance. 719-726 - Jacob Steinhardt, Percy Liang:

Filtering with Abstract Particles. 727-735 - Taiji Suzuki:

Stochastic Dual Coordinate Ascent with Alternating Direction Method of Multipliers. 736-744 - Jian Zhou, Olga G. Troyanskaya:

Deep Supervised and Convolutional Generative Stochastic Network for Protein Secondary Structure Prediction. 745-753 - Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown:

An Efficient Approach for Assessing Hyperparameter Importance. 754-762
Cycle 2 Papers
- Ke Sun, Stéphane Marchand-Maillet:

An Information Geometry of Statistical Manifold Learning. 1-9 - Masrour Zoghi, Shimon Whiteson, Rémi Munos, Maarten de Rijke:

Relative Upper Confidence Bound for the K-Armed Dueling Bandit Problem. 10-18 - Raffay Hamid, Ying Xiao, Alex Gittens, Dennis DeCoste:

Compact Random Feature Maps. 19-27 - Aryeh Kontorovich:

Concentration in unbounded metric spaces and algorithmic stability. 28-36 - Daniel J. Hsu, Sivan Sabato:

Heavy-tailed regression with a generalized median-of-means. 37-45 - Michal Valko, Rémi Munos, Branislav Kveton, Tomás Kocák:

Spectral Bandits for Smooth Graph Functions. 46-54 - Qian Zhao, Deyu Meng, Zongben Xu, Wangmeng Zuo, Lei Zhang:

Robust Principal Component Analysis with Complex Noise. 55-63 - Qi-Xing Huang, Yuxin Chen, Leonidas J. Guibas:

Scalable Semidefinite Relaxation for Maximum A Posterior Estimation. 64-72 - Cun Mu, Bo Huang, John Wright, Donald Goldfarb:

Square Deal: Lower Bounds and Improved Relaxations for Tensor Recovery. 73-81 - Sanmay Das, Allen Lavoie:

Automated inference of point of view from user interactions in collective intelligence venues. 82-90 - Zheng Wang, Ming-Jun Lai, Zhaosong Lu, Wei Fan, Hasan Davulcu, Jieping Ye:

Rank-One Matrix Pursuit for Matrix Completion. 91-99 - Yuxin Chen, Leonidas J. Guibas, Qi-Xing Huang:

Near-Optimal Joint Object Matching via Convex Relaxation. 100-108 - Dmitry Malioutov, Nikolai Slavov:

Convex Total Least Squares. 109-117 - Pratik Jawanpuria, Manik Varma, J. Saketha Nath:

On p-norm Path Following in Multiple Kernel Learning for Non-linear Feature Selection. 118-126 - Xiaotong Yuan, Ping Li, Tong Zhang:

Gradient Hard Thresholding Pursuit for Sparsity-Constrained Optimization. 127-135 - Jean Honorio, Tommi S. Jaakkola:

A Unified Framework for Consistency of Regularized Loss Minimizers. 136-144 - Binbin Lin, Ji Yang, Xiaofei He, Jieping Ye:

Geodesic Distance Function Learning via Heat Flow on Vector Fields. 145-153 - Adish Singla

, Ilija Bogunovic, Gábor Bartók, Amin Karbasi, Andreas Krause:
Near-Optimally Teaching the Crowd to Classify. 154-162 - Walid Krichene, Benjamin Drighès, Alexandre M. Bayen:

On the convergence of no-regret learning in selfish routing. 163-171 - Jérémie Mary, Philippe Preux, Olivier Nicol:

Improving offline evaluation of contextual bandit algorithms via bootstrapping techniques. 172-180 - Aviv Tamar, Shie Mannor, Huan Xu:

Scaling Up Robust MDPs using Function Approximation. 181-189 - Wei Ping, Qiang Liu, Alexander Ihler:

Marginal Structured SVM with Hidden Variables. 190-198 - Yariv Dror Mizrahi, Misha Denil, Nando de Freitas:

Linear and Parallel Learning of Markov Random Fields. 199-207 - Yarin Gal, Zoubin Ghahramani:

Pitfalls in the use of Parallel Inference for the Dirichlet Process. 208-216 - Yuan Zhou, Xi Chen, Jian Li:

Optimal PAC Multiple Arm Identification with Applications to Crowdsourcing. 217-225 - Yoshua Bengio, Eric Laufer, Guillaume Alain, Jason Yosinski:

Deep Generative Stochastic Networks Trainable by Backprop. 226-234 - Jie Wang, Qingyang Li, Sen Yang, Wei Fan, Peter Wonka, Jieping Ye:

A Highly Scalable Parallel Algorithm for Isotropic Total Variation Models. 235-243 - Yudong Chen, Jiaming Xu:

Statistical-Computational Phase Transitions in Planted Models: The High-Dimensional Setting. 244-252 - Emile Contal, Vianney Perchet, Nicolas Vayatis:

Gaussian Process Optimization with Mutual Information. 253-261 - Dengyong Zhou, Qiang Liu, John C. Platt, Christopher Meek:

Aggregating Ordinal Labels from Crowds by Minimax Conditional Entropy. 262-270 - Mathias Niepert, Pedro M. Domingos:

Exchangeable Variable Models. 271-279 - Shai Ben-David, Nika Haghtalab:

Clustering in the Presence of Background Noise. 280-288 - Jun Liu, Zheng Zhao, Jie Wang, Jieping Ye:

Safe Screening with Variational Inequalities and Its Application to Lasso. 289-297 - Shan-Hung Wu, Hao-Heng Chien, Kuan-Hua Lin, Philip S. Yu:

Learning the Consistent Behavior of Common Users for Target Node Prediction across Social Networks. 298-306 - Joan Bruna Estrach, Arthur Szlam, Yann LeCun:

Signal recovery from Pooling Representations. 307-315 - Emma Brunskill, Lihong Li:

PAC-inspired Option Discovery in Lifelong Reinforcement Learning. 316-324 - Zijia Lin, Guiguang Ding, Mingqing Hu, Jianmin Wang

:
Multi-label Classification via Feature-aware Implicit Label Space Encoding. 325-333 - Sébastien Bratières, Novi Quadrianto, Sebastian Nowozin, Zoubin Ghahramani:

Scalable Gaussian Process Structured Prediction for Grid Factor Graph Applications. 334-342 - Stéphan Clémençon, Sylvain Robbiano:

Anomaly Ranking as Supervised Bipartite Ranking. 343-351 - Gunnar E. Carlsson, Facundo Mémoli, Alejandro Ribeiro, Santiago Segarra:

Hierarchical Quasi-Clustering Methods for Asymmetric Networks. 352-360 - Masahiro Nakano, Katsuhiko Ishiguro, Akisato Kimura, Takeshi Yamada, Naonori Ueda:

Rectangular Tiling Process. 361-369 - Jun Wang, Ke Sun, Fei Sha, Stéphane Marchand-Maillet, Alexandros Kalousis:

Two-Stage Metric Learning. 370-378 - José Miguel Hernández-Lobato, Neil Houlsby, Zoubin Ghahramani:

Stochastic Inference for Scalable Probabilistic Modeling of Binary Matrices. 379-387 - Eunho Yang, Aurélie C. Lozano, Pradeep Ravikumar:

Elementary Estimators for High-Dimensional Linear Regression. 388-396 - Eunho Yang, Aurélie C. Lozano, Pradeep Ravikumar:

Elementary Estimators for Sparse Covariance Matrices and other Structured Moments. 397-405 - Yuan Fang, Kevin Chen-Chuan Chang, Hady Wirawan Lauw:

Graph-based Semi-supervised Learning: Realizing Pointwise Smoothness Probabilistically. 406-414 - Chengtao Li, Jun Zhu, Jianfei Chen:

Bayesian Max-margin Multi-Task Learning with Data Augmentation. 415-423 - Zhiwei Qin, Weichang Li, Firdaus Janoos:

Sparse Reinforcement Learning via Convex Optimization. 424-432 - Filipe Rodrigues, Francisco C. Pereira, Bernardete Ribeiro:

Gaussian Process Classification and Active Learning with Multiple Annotators. 433-441 - Hongyu Su, Aristides Gionis, Juho Rousu:

Structured Prediction of Network Response. 442-450 - Gavin Taylor, Connor Geer, David Piekut:

An Analysis of State-Relevance Weights and Sampling Distributions on L1-Regularized Approximate Linear Programming Approximation Accuracy. 451-459 - Zhirong Yang, Jaakko Peltonen, Samuel Kaski:

Optimization Equivalence of Divergences Improves Neighbor Embedding. 460-468 - Ji Liu, Stephen J. Wright, Christopher Ré, Victor Bittorf, Srikrishna Sridhar:

An Asynchronous Parallel Stochastic Coordinate Descent Algorithm. 469-477 - Samory Kpotufe, Eleni Sgouritsa, Dominik Janzing, Bernhard Schölkopf:

Consistency of Causal Inference under the Additive Noise Model. 478-486 - Alexander G. Schwing, Tamir Hazan, Marc Pollefeys, Raquel Urtasun:

Globally Convergent Parallel MAP LP Relaxation Solver using the Frank-Wolfe Algorithm. 487-495 - Alan Malek, Yasin Abbasi-Yadkori, Peter L. Bartlett:

Linear Programming for Large-Scale Markov Decision Problems. 496-504 - Feiping Nie, Yizhen Huang, Heng Huang:

Linear Time Solver for Primal SVM. 505-513 - Seong-Hwan Jun, Alexandre Bouchard-Côté:

Memory (and Time) Efficient Sequential Monte Carlo. 514-522 - Jie Wang, Peter Wonka, Jieping Ye:

Scaling SVM and Least Absolute Deviations via Exact Data Reduction. 523-531 - Xin Li, Yuhong Guo:

Latent Semantic Representation Learning for Scene Classification. 532-540 - Alekh Agarwal, Sham M. Kakade, Nikos Karampatziakis, Le Song, Gregory Valiant:

Least Squares Revisited: Scalable Approaches for Multi-class Prediction. 541-549 - Pranjal Awasthi, Maria-Florina Balcan, Konstantin Voevodski:

Local algorithms for interactive clustering. 550-558 - Ngo Anh Vien, Marc Toussaint:

Model-Based Relational RL When Object Existence is Partially Observable. 559-567 - Richard S. Sutton, Ashique Rupam Mahmood, Doina Precup, Hado van Hasselt:

A new Q(lambda) with interim forward view and Monte Carlo equivalence. 568-576 - MohamadAli Torkamani, Daniel Lowd:

On Robustness and Regularization of Structural Support Vector Machines. 577-585 - Oscar Beijbom, Mohammad J. Saberian, David J. Kriegman, Nuno Vasconcelos:

Guess-Averse Loss Functions For Cost-Sensitive Multiclass Boosting. 586-594 - Ryan Kiros, Ruslan Salakhutdinov, Richard S. Zemel:

Multimodal Neural Language Models. 595-603 - Jascha Sohl-Dickstein, Ben Poole, Surya Ganguli:

Fast large-scale optimization by unifying stochastic gradient and quasi-Newton methods. 604-612 - Xinyang Yi, Constantine Caramanis, Sujay Sanghavi:

Alternating Minimization for Mixed Linear Regression. 613-621 - Matt J. Kusner, Stephen Tyree, Kilian Q. Weinberger, Kunal Agrawal:

Stochastic Neighbor Compression. 622-630 - Junfeng Wen, Chun-Nam Yu, Russell Greiner:

Robust Learning under Uncertain Test Distributions: Relating Covariate Shift to Model Misspecification. 631-639 - Le Song, Animashree Anandkumar, Bo Dai, Bo Xie:

Nonparametric Estimation of Multi-View Latent Variable Models. 640-648 - Chris J. Maddison, Daniel Tarlow:

Structured Generative Models of Natural Source Code. 649-657 - Jinfeng Yi, Lijun Zhang, Jun Wang, Rong Jin, Anil K. Jain:

A Single-Pass Algorithm for Efficiently Recovering Sparse Cluster Centers of High-dimensional Data. 658-666 - Panagiotis Toulis, Edoardo M. Airoldi, Jason Rennie:

Statistical analysis of stochastic gradient methods for generalized linear models. 667-675 - Ping Li, Michael Mitzenmacher, Anshumali Shrivastava:

Coding for Random Projections. 676-684 - Marco Cuturi, Arnaud Doucet:

Fast Computation of Wasserstein Barycenters. 685-693 - Fredrik D. Johansson, Vinay Jethava, Devdatt P. Dubhashi, Chiranjib Bhattacharyya:

Global graph kernels using geometric embeddings. 694-702 - Zhiyuan Chen, Bing Liu:

Topic Modeling using Topics from Many Domains, Lifelong Learning and Big Data. 703-711 - Alon Vinnikov, Shai Shalev-Shwartz:

K-means recovers ICA filters when independent components are sparse. 712-720 - Yuekai Sun, Stratis Ioannidis, Andrea Montanari:

Learning Mixtures of Linear Classifiers. 721-729 - Yu-Xiang Wang, Alexander J. Smola, Ryan J. Tibshirani:

The Falling Factorial Basis and Its Statistical Applications. 730-738 - Trong Nghia Hoang, Bryan Kian Hsiang Low, Patrick Jaillet, Mohan S. Kankanhalli:

Nonmyopic \(\epsilon\)-Bayes-Optimal Active Learning of Gaussian Processes. 739-747 - Andreas Argyriou, Francesco Dinuzzo:

A Unifying View of Representer Theorems. 748-756 - Claudio Gentile, Shuai Li, Giovanni Zappella:

Online Clustering of Bandits. 757-765 - Neil Houlsby, José Miguel Hernández-Lobato, Zoubin Ghahramani:

Cold-start Active Learning with Robust Ordinal Matrix Factorization. 766-774 - Hoang Vu Nguyen, Emmanuel Müller, Jilles Vreeken, Pavel Efros, Klemens Böhm:

Multivariate Maximal Correlation Analysis. 775-783 - Yasuhiro Fujiwara, Go Irie:

Efficient Label Propagation. 784-792 - Hadi Daneshmand, Manuel Gomez-Rodriguez, Le Song, Bernhard Schölkopf:

Estimating Diffusion Network Structures: Recovery Conditions, Sample Complexity & Soft-thresholding Algorithm. 793-801 - Ling Yan, Wu-Jun Li, Gui-Rong Xue, Dingyi Han:

Coupled Group Lasso for Web-Scale CTR Prediction in Display Advertising. 802-810 - Alexander Novikov, Anton Rodomanov, Anton Osokin, Dmitry P. Vetrov:

Putting MRFs on a Tensor Train. 811-819 - Lijun Zhang, Jinfeng Yi, Rong Jin:

Efficient Algorithms for Robust One-bit Compressive Sensing. 820-828 - Sergey Levine, Vladlen Koltun:

Learning Complex Neural Network Policies with Trajectory Optimization. 829-837 - Ting Zhang, Chao Du, Jingdong Wang:

Composite Quantization for Approximate Nearest Neighbor Search. 838-846 - Yoshikazu Terada, Ulrike von Luxburg:

Local Ordinal Embedding. 847-855 - Nir Ailon, Zohar Shay Karnin, Thorsten Joachims:

Reducing Dueling Bandits to Cardinal Bandits. 856-864 - Chang Xu, Dacheng Tao, Chao Xu, Yong Rui:

Large-margin Weakly Supervised Dimensionality Reduction. 865-873 - Deepayan Chakrabarti, Stanislav Funiak, Jonathan Chang, Sofus A. Macskassy:

Joint Inference of Multiple Label Types in Large Networks. 874-882 - Zohar Shay Karnin, Elad Hazan:

Hard-Margin Active Linear Regression. 883-891 - Aryeh Kontorovich, Roi Weiss:

Maximum Margin Multiclass Nearest Neighbors. 892-900 - Tian Lin, Bruno D. Abrahao, Robert D. Kleinberg, John C. S. Lui, Wei Chen:

Combinatorial Partial Monitoring Game with Linear Feedback and Its Applications. 901-909 - Mélanie Rey, Volker Roth, Thomas J. Fuchs:

Sparse meta-Gaussian information bottleneck. 910-918 - Akshay Krishnamurthy, Kirthevasan Kandasamy, Barnabás Póczos, Larry A. Wasserman:

Nonparametric Estimation of Renyi Divergence and Friends. 919-927 - Jun-Kun Wang, Shou-de Lin:

Robust Inverse Covariance Estimation under Noisy Measurements. 928-936 - Jacob R. Gardner, Matt J. Kusner, Zhixiang Eddie Xu, Kilian Q. Weinberger, John P. Cunningham:

Bayesian Optimization with Inequality Constraints. 937-945 - Felix X. Yu, Sanjiv Kumar, Yunchao Gong, Shih-Fu Chang:

Circulant Binary Embedding. 946-954 - Jie Liu, Chunming Zhang, Elizabeth S. Burnside, David Page:

Multiple Testing under Dependence via Semiparametric Graphical Models. 955-963 - Bojun Tu, Zhihua Zhang, Shusen Wang, Hui Qian:

Making Fisher Discriminant Analysis Scalable. 964-972 - Dongwoo Kim, Alice Oh:

Hierarchical Dirichlet Scaling Process. 973-981 - Issei Sato, Hiroshi Nakagawa:

Approximation Analysis of Stochastic Gradient Langevin Dynamics by using Fokker-Planck Equation and Ito Process. 982-990 - Anastasia Pentina, Christoph H. Lampert:

A PAC-Bayesian bound for Lifelong Learning. 991-999 - Ohad Shamir, Nathan Srebro, Tong Zhang:

Communication-Efficient Distributed Optimization using an Approximate Newton-type Method. 1000-1008 - Maayan Harel, Shie Mannor, Ran El-Yaniv, Koby Crammer:

Concept Drift Detection Through Resampling. 1009-1017 - David F. Gleich, Michael W. Mahoney:

Anti-differentiating approximation algorithms: A case study with min-cuts, spectral, and flow. 1018-1025 - Siamak Ravanbakhsh, Christopher Srinivasa, Brendan J. Frey, Russell Greiner:

Min-Max Problems on Factor Graphs. 1035-1043 - Sungjin Ahn, Babak Shahbaba, Max Welling:

Distributed Stochastic Gradient MCMC. 1044-1052 - Anoop Cherian:

Nearest Neighbors Using Compact Sparse Codes. 1053-1061 - Feiping Nie, Jianjun Yuan, Heng Huang:

Optimal Mean Robust Principal Component Analysis. 1062-1070 - Róbert Busa-Fekete, Eyke Hüllermeier, Balázs Szörényi:

Preference-Based Rank Elicitation using Statistical Models: The Case of Mallows. 1071-1079 - Bilal Ahmed, Thomas Thesen, Karen E. Blackmon, Yijun Zhao, Orrin Devinsky, Ruben Kuzniecky, Carla E. Brodley:

Hierarchical Conditional Random Fields for Outlier Detection: An Application to Detecting Epileptogenic Cortical Malformations. 1080-1088 - Jonathan Scholz, Martin Levihn, Charles Lee Isbell Jr., David Wingate:

A Physics-Based Model Prior for Object-Oriented MDPs. 1089-1097 - Shinya Suzumura, Kohei Ogawa, Masashi Sugiyama, Ichiro Takeuchi:

Outlier Path: A Homotopy Algorithm for Robust SVM. 1098-1106 - Naiyan Wang, Dit-Yan Yeung:

Ensemble-Based Tracking: Aggregating Crowdsourced Structured Time Series Data. 1107-1115 - Issei Sato, Hisashi Kashima, Hiroshi Nakagawa:

Latent Confusion Analysis by Normalized Gamma Construction. 1116-1124 - Aaron Defazio, Justin Domke, Tibério S. Caetano:

Finito: A faster, permutable incremental gradient method for big data problems. 1125-1133 - Corinna Cortes, Vitaly Kuznetsov, Mehryar Mohri:

Ensemble Methods for Structured Prediction. 1134-1142 - Simone Romano, James Bailey, Xuan Vinh Nguyen, Karin Verspoor:

Standardized Mutual Information for Clustering Comparisons: One Step Further in Adjustment for Chance. 1143-1151 - Jason Pacheco, Silvia Zuffi, Michael J. Black, Erik B. Sudderth:

Preserving Modes and Messages via Diverse Particle Selection. 1152-1160 - Liming Wang, Abolfazl Razi, Miguel R. D. Rodrigues, A. Robert Calderbank, Lawrence Carin:

Nonlinear Information-Theoretic Compressive Measurement Design. 1161-1169 - Marco Gaboardi

, Emilio Jesús Gallego Arias, Justin Hsu, Aaron Roth, Zhiwei Steven Wu:
Dual Query: Practical Private Query Release for High Dimensional Data. 1170-1178 - Corinna Cortes, Mehryar Mohri, Umar Syed:

Deep Boosting. 1179-1187 - Quoc V. Le, Tomás Mikolov:

Distributed Representations of Sentences and Documents. 1188-1196 - Robert McGibbon, Bharath Ramsundar, Mohammad Sultan, Gert Kiss, Vijay S. Pande:

Understanding Protein Dynamics with L1-Regularized Reversible Hidden Markov Models. 1197-1205 - Haitham Bou-Ammar, Eric Eaton, Paul Ruvolo, Matthew E. Taylor:

Online Multi-Task Learning for Policy Gradient Methods. 1206-1214 - Jason Weston, Ron J. Weiss, Hector Yee:

Affinity Weighted Embedding. 1215-1223 - Raja Hafiz Affandi, Emily B. Fox, Ryan P. Adams, Benjamin Taskar:

Learning the Parameters of Determinantal Point Process Kernels. 1224-1232 - Elad Eban, Elad Mezuman, Amir Globerson:

Discrete Chebyshev Classifiers. 1233-1241 - Karol Gregor, Ivo Danihelka, Andriy Mnih, Charles Blundell, Daan Wierstra:

Deep AutoRegressive Networks. 1242-1250 - Peng Sun, Tong Zhang, Jie Zhou:

A Convergence Rate Analysis for LogitBoost, MART and Their Variant. 1251-1259 - Uri Heinemann, Amir Globerson:

Inferning with High Girth Graphical Models. 1260-1268 - Zhaoshi Meng, Brian Eriksson, Alfred O. Hero III:

Learning Latent Variable Gaussian Graphical Models. 1269-1277 - Danilo Jimenez Rezende, Shakir Mohamed, Daan Wierstra:

Stochastic Backpropagation and Approximate Inference in Deep Generative Models. 1278-1286 - Yevgeny Seldin, Aleksandrs Slivkins:

One Practical Algorithm for Both Stochastic and Adversarial Bandits. 1287-1295 - Joachim Giesen, Sören Laue, Patrick Wieschollek:

Robust and Efficient Kernel Hyperparameter Paths with Guarantees. 1296-1304 - Xuezhi Wang, Tzu-Kuo Huang, Jeff G. Schneider:

Active Transfer Learning under Model Shift. 1305-1313 - Bruno Scherrer:

Approximate Policy Iteration Schemes: A Comparison. 1314-1322 - Tsung-Han Lin, H. T. Kung:

Stable and Efficient Representation Learning with Nonnegativity Constraints. 1323-1331 - Robert C. Grande, Thomas J. Walsh, Jonathan P. How:

Sample Efficient Reinforcement Learning with Gaussian Processes. 1332-1340 - Farhad Pourkamali-Anaraki, Shannon M. Hughes:

Memory and Computation Efficient PCA via Very Sparse Random Projections. 1341-1349 - Timothy A. Mann, Daniel J. Mankowitz, Shie Mannor:

Time-Regularized Interrupting Options (TRIO). 1350-1358 - David Lopez-Paz, Suvrit Sra, Alexander J. Smola, Zoubin Ghahramani, Bernhard Schölkopf:

Randomized Nonlinear Component Analysis. 1359-1367 - Yujia Li, Richard S. Zemel:

High Order Regularization for Semi-Supervised Learning of Structured Output Problems. 1368-1376 - Gang Niu, Bo Dai, Marthinus Christoffel du Plessis, Masashi Sugiyama:

Transductive Learning with Multi-class Volume Approximation. 1377-1385 - Borja Balle, William L. Hamilton, Joelle Pineau:

Methods of Moments for Learning Stochastic Languages: Unified Presentation and Empirical Comparison. 1386-1394 - Nicolas Chapados:

Effective Bayesian Modeling of Groups of Related Count Time Series. 1395-1403 - Sergey Bartunov, Dmitry P. Vetrov:

Variational Inference for Sequential Distance Dependent Chinese Restaurant Process. 1404-1412 - Scott W. Linderman, Ryan P. Adams:

Discovering Latent Network Structure in Point Process Data. 1413-1421 - Kacper Chwialkowski, Arthur Gretton:

A Kernel Independence Test for Random Processes. 1422-1430 - Scott E. Reed, Kihyuk Sohn, Yuting Zhang, Honglak Lee:

Learning to Disentangle Factors of Variation with Manifold Interaction. 1431-1439 - Elham Azizi, Edoardo M. Airoldi, James E. Galagan:

Learning Modular Structures from Network Data and Node Variables. 1440-1448 - Yusuke Mukuta, Tatsuya Harada:

Probabilistic Partial Canonical Correlation Analysis. 1449-1457 - Marc G. Bellemare, Joel Veness, Erik Talvitie:

Skip Context Tree Switching. 1458-1466 - Christopher Tosh, Sanjoy Dasgupta:

Lower Bounds for the Gibbs Sampler over Mixtures of Gaussians. 1467-1475 - Minmin Chen, Kilian Q. Weinberger, Fei Sha, Yoshua Bengio:

Marginalized Denoising Auto-encoders for Nonlinear Representations. 1476-1484 - David Barber, Yali Wang:

Gaussian Processes for Bayesian Estimation in Ordinary Differential Equations. 1485-1493 - Kai Wei, Rishabh K. Iyer, Jeff A. Bilmes:

Fast Multi-stage Submodular Maximization. 1494-1502 - Marc Schoenauer, Riad Akrour, Michèle Sebag, Jean-Christophe Souplet:

Programming by Feedback. 1503-1511 - José Miguel Hernández-Lobato, Neil Houlsby, Zoubin Ghahramani:

Probabilistic Matrix Factorization with Non-random Missing Data. 1512-1520 - Lili Dworkin, Michael J. Kearns, Yuriy Nevmyvaka:

Pursuit-Evasion Without Regret, with an Application to Trading. 1521-1529 - Sven Kurras, Ulrike von Luxburg, Gilles Blanchard:

The f-Adjusted Graph Laplacian: a Diagonal Modification with a Geometric Interpretation. 1530-1538 - Mingkui Tan, Ivor W. Tsang

, Li Wang, Bart Vandereycken, Sinno Jialin Pan:
Riemannian Pursuit for Big Matrix Recovery. 1539-1547 - Leonidas Lefakis, François Fleuret:

Dynamic Programming Boosting for Discriminative Macro-Action Discovery. 1548-1556 - Mohammad Gheshlaghi Azar, Alessandro Lazaric, Emma Brunskill:

Online Stochastic Optimization under Correlated Bandit Feedback. 1557-1565 - Yudong Chen, Shiau Hong Lim, Huan Xu:

Weighted Graph Clustering with Non-Uniform Uncertainties. 1566-1574 - Philip Thomas:

GeNGA: A Generalization of Natural Gradient Ascent with Positive and Negative Convergence Results. 1575-1583 - Qinxun Bai, Henry Lam, Stan Sclaroff:

A Bayesian Framework for Online Classifier Ensemble. 1584-1592 - Jacob Steinhardt, Percy Liang:

Adaptivity and Optimism: An Improved Exponentiated Gradient Algorithm. 1593-1601 - Li-Ping Liu, Daniel Sheldon, Thomas G. Dietterich:

Gaussian Approximation of Collective Graphical Models. 1602-1610 - Hyun Oh Song, Ross B. Girshick, Stefanie Jegelka, Julien Mairal, Zaïd Harchaoui, Trevor Darrell:

On learning to localize objects with minimal supervision. 1611-1619 - Risi Kondor, Nedelina Teneva, Vikas K. Garg:

Multiresolution Matrix Factorization. 1620-1628 - Li-Ping Liu, Thomas G. Dietterich:

Learnability of the Superset Label Learning Problem. 1629-1637 - Alekh Agarwal, Daniel J. Hsu, Satyen Kale, John Langford, Lihong Li, Robert E. Schapire:

Taming the Monster: A Fast and Simple Algorithm for Contextual Bandits. 1638-1646 - Roni Mittelman, Benjamin Kuipers, Silvio Savarese, Honglak Lee:

Structured Recurrent Temporal Restricted Boltzmann Machines. 1647-1655 - Stanislav Minsker, Sanvesh Srivastava, Lizhen Lin, David B. Dunson:

Scalable and Robust Bayesian Inference via the Median Posterior. 1656-1664 - Dino Sejdinovic, Heiko Strathmann, Maria Lomeli Garcia, Christophe Andrieu, Arthur Gretton:

Kernel Adaptive Metropolis-Hastings. 1665-1673 - Jasper Snoek, Kevin Swersky, Richard S. Zemel, Ryan P. Adams:

Input Warping for Bayesian Optimization of Non-Stationary Functions. 1674-1682 - Tianqi Chen, Emily B. Fox, Carlos Guestrin:

Stochastic Gradient Hamiltonian Monte Carlo. 1683-1691 - George Trigeorgis, Konstantinos Bousmalis, Stefanos Zafeiriou, Björn W. Schuller:

A Deep Semi-NMF Model for Learning Hidden Representations. 1692-1700 - Ruiliang Zhang, James T. Kwok:

Asynchronous Distributed ADMM for Consensus Optimization. 1701-1709 - Ariadna Quattoni, Borja Balle, Xavier Carreras, Amir Globerson:

Spectral Regularization for Max-Margin Sequence Tagging. 1710-1718 - Gaurav Pandey, Ambedkar Dukkipati:

Learning by Stretching Deep Networks. 1719-1727 - Megasthenis Asteris, Dimitris S. Papailiopoulos, Alexandros G. Dimakis:

Nonnegative Sparse PCA with Provable Guarantees. 1728-1736 - Bruno Castro da Silva, George Dimitri Konidaris, Andrew G. Barto:

Active Learning of Parameterized Skills. 1737-1745 - Oren Rippel, Michael A. Gelbart, Ryan P. Adams:

Learning Ordered Representations with Nested Dropout. 1746-1754 - Taco Cohen, Max Welling:

Learning the Irreducible Representations of Commutative Lie Groups. 1755-1763 - Alex Graves, Navdeep Jaitly:

Towards End-To-End Speech Recognition with Recurrent Neural Networks. 1764-1772 - Jinli Hu, Amos J. Storkey:

Multi-period Trading Prediction Markets with Connections to Machine Learning. 1773-1781 - Diederik P. Kingma, Max Welling:

Efficient Gradient-Based Inference through Transformations between Bayes Nets and Neural Nets. 1782-1790 - Andriy Mnih, Karol Gregor:

Neural Variational Inference and Learning in Belief Networks. 1791-1799 - Piyush Rai, Yingjian Wang, Shengbo Guo, Gary Chen, David B. Dunson, Lawrence Carin:

Scalable Bayesian Low-Rank Decomposition of Incomplete Multiway Tensors. 1800-1808 - Creighton Heaukulani, David A. Knowles, Zoubin Ghahramani:

Beta Diffusion Trees. 1809-1817 - Cícero Nogueira dos Santos, Bianca Zadrozny:

Learning Character-level Representations for Part-of-Speech Tagging. 1818-1826 - Adams Wei Yu, Fatma Kilinç-Karzan, Jaime G. Carbonell:

Saddle Points and Accelerated Perceptron Algorithms. 1827-1835 - Hua Wang, Feiping Nie, Heng Huang:

Robust Distance Metric Learning via Simultaneous L1-Norm Minimization and Maximization. 1836-1844 - Kareem Amin, Hoda Heidari, Michael J. Kearns:

Learning from Contagion (Without Timestamps). 1845-1853 - Matthew James Johnson, Alan S. Willsky:

Stochastic Variational Inference for Bayesian Time Series Models. 1854-1862 - Jan Koutník, Klaus Greff, Faustino J. Gomez, Jürgen Schmidhuber:

A Clockwork RNN. 1863-1871 - Arun Tejasvi Chaganty, Percy Liang:

Estimating Latent-Variable Graphical Models using Moments and Likelihoods. 1872-1880 - Srinadh Bhojanapalli, Prateek Jain:

Universal Matrix Completion. 1881-1889 - Dimitris S. Papailiopoulos, Ioannis Mitliagkas, Alexandros G. Dimakis, Constantine Caramanis:

Finding Dense Subgraphs via Low-Rank Bilinear Optimization. 1890-1898 - Jan A. Botha, Phil Blunsom:

Compositional Morphology for Word Representations and Language Modelling. 1899-1907 - Alexandr Andoni, Rina Panigrahy, Gregory Valiant, Li Zhang:

Learning Polynomials with Neural Networks. 1908-1916 - Suriya Gunasekar, Pradeep Ravikumar, Joydeep Ghosh:

Exponential Family Matrix Completion under Structural Constraints. 1917-1925 - Philip Bachman, Amir-massoud Farahmand, Doina Precup:

Sample-based approximate regularization. 1926-1934 - Brooks Paige, Frank D. Wood:

A Compilation Target for Probabilistic Programming Languages. 1935-1943 - James Neufeld, András György, Csaba Szepesvári, Dale Schuurmans:

Adaptive Monte Carlo via Bandit Allocation. 1944-1952 - Safiye Celik, Benjamin A. Logsdon, Su-In Lee:

Efficient Dimensionality Reduction for High-Dimensional Network Estimation. 1953-1961 - E. Busra Celikkaya, Christian R. Shelton:

Deterministic Anytime Inference for Stochastic Continuous-Time Markov Processes. 1962-1970 - Michalis K. Titsias, Miguel Lázaro-Gredilla:

Doubly Stochastic Variational Bayes for non-Conjugate Inference. 1971-1979 - Daryl Lim, Gert R. G. Lanckriet:

Efficient Learning of Mahalanobis Metrics for Ranking. 1980-1988 - Arpit Agarwal, Harikrishna Narasimhan, Shivaram Kalyanakrishnan, Shivani Agarwal:

GEV-Canonical Regression for Accurate Binary Class Probability Estimation when One Class is Rare. 1989-1997 - David A. Knowles, Zoubin Ghahramani, Konstantina Palla:

A reversible infinite HMM using normalised random measures. 1998-2006 - Benjamin D. Haeffele, Eric Young, René Vidal:

Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing. 2007-2015 - Nan Du, Yingyu Liang, Maria-Florina Balcan, Le Song:

Influence Function Learning in Information Diffusion Networks. 2016-2024

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














