


default search action
16th COLT 2003: Washington, DC, USA
- Bernhard Schölkopf, Manfred K. Warmuth:

Computational Learning Theory and Kernel Machines, 16th Annual Conference on Computational Learning Theory and 7th Kernel Workshop, COLT/Kernel 2003, Washington, DC, USA, August 24-27, 2003, Proceedings. Lecture Notes in Computer Science 2777, Springer 2003, ISBN 3-540-40720-0
Target Area: Computational Game Theory
- Michael L. Littman:

Tutorial: Learning Topics in Game-Theoretic Decision Making. 1
Invited Talk
- Amy Greenwald

, Amir Jafari:
A General Class of No-Regret Learning Algorithms and Game-Theoretic Equilibria. 2-12
Contributed Talks
- Avrim Blum, Jeffrey C. Jackson, Tuomas Sandholm, Martin Zinkevich:

Preference Elicitation and Query Learning. 13-25 - Adam Kalai, Santosh S. Vempala:

Efficient Algorithms for Online Decision Problems. 26-40
Kernel Machines
- Corinna Cortes, Patrick Haffner, Mehryar Mohri:

Positive Definite Rational Kernels. 41-56 - Tony Jebara, Risi Kondor:

Bhattacharyya Expected Likelihood Kernels. 57-71 - Matthias Hein, Olivier Bousquet:

Maximal Margin Classification for Metric Spaces. 72-86 - Roni Khardon, Rocco A. Servedio:

Maximum Margin Algorithms with Boolean Kernels. 87-101 - Glenn Fung, Olvi L. Mangasarian, Jude W. Shavlik:

Knowledge-Based Nonlinear Kernel Classifiers. 102-113 - Christina S. Leslie, Rui Kuang:

Fast Kernels for Inexact String Matching. 114-128 - Thomas Gärtner

, Peter A. Flach, Stefan Wrobel:
On Graph Kernels: Hardness Results and Efficient Alternatives. 129-143 - Alexander J. Smola, Risi Kondor:

Kernels and Regularization on Graphs. 144-158 - Ilya Desyatnikov, Ron Meir:

Data-Dependent Bounds for Multi-category Classification Based on Convex Losses. 159-172
Poster Session 1
- Marina Meila:

Comparing Clusterings by the Variation of Information. 173-187 - Fei Sha, Lawrence K. Saul, Daniel D. Lee:

Multiplicative Updates for Large Margin Classifiers. 188-202 - David A. McAllester:

Simplified PAC-Bayesian Margin Bounds. 203-215 - Michinari Momma, Kristin P. Bennett:

Sparse Kernel Partial Least Squares Regression. 216-230 - Shantanu Chakrabartty, Gert Cauwenberghs

, Jayadeva:
Sparse Probability Regression by Label Partitioning. 231-242 - Jinbo Bi, Vladimir Vapnik:

Learning with Rigorous Support Vector Machines. 243-257 - Balázs Kégl:

Robust Regression by Boosting the Median. 258-272 - Sanjoy Dasgupta, Philip M. Long:

Boosting with Diverse Base Classifiers. 273-287 - Jaz S. Kandola, Thore Graepel, John Shawe-Taylor

:
Reducing Kernel Matrix Diagonal Dominance Using Semi-definite Programming. 288-302
Statistical Learning Theory
- Alexandre B. Tsybakov:

Optimal Rates of Aggregation. 303-313 - Ulrike von Luxburg, Olivier Bousquet:

Distance-Based Classification with Lipschitz Functions. 314-328 - Shahar Mendelson, Petra Philips:

Random Subclass Bounds. 329-343 - Avrim Blum, John Langford:

PAC-MDL Bounds. 344-357
Online Learning
- Vladimir Vovk:

Universal Well-Calibrated Algorithm for On-Line Classification. 358-372 - Nicolò Cesa-Bianchi, Alex Conconi, Claudio Gentile:

Learning Probabilistic Linear-Threshold Classifiers via Selective Sampling. 373-387 - Koby Crammer, Yoram Singer:

Learning Algorithm for Enclosing Points in Bregmanian Spheres. 388-402 - Gilles Stoltz, Gábor Lugosi:

Internal Regret in On-Line Portfolio Selection. 403-417
Other Approaches
- Shie Mannor

, John N. Tsitsiklis:
Lower Bounds on the Sample Complexity of Exploration in the Multi-armed Bandit Problem. 418-432 - Ofer Dekel, Shai Shalev-Shwartz, Yoram Singer:

Smooth e-Intensive Regression by Loss Symmetrization. 433-447 - Nina Mishra, Dana Ron, Ram Swaminathan:

On Finding Large Conjunctive Clusters. 448-462 - Adam R. Klivans, Amir Shpilka

:
Learning Arithmetic Circuits via Partial Derivatives. 463-476
Poster Session 2
- Malik Magdon-Ismail, Joseph Sill:

Using a Linear Fit to Determine Monotonicity Directions. 477-491 - Vladimir Koltchinskii, Dmitry Panchenko, Savina Andonova:

Generalization Bounds for Voting Classifiers Based on Sparsity and Clustering. 492-505 - Marcus Hutter

:
Sequence Prediction Based on Monotone Complexity. 506-521 - Yuri Kalnishkan, Vladimir Vovk, Michael V. Vyugin:

How Many Strings Are Easy to Predict? 522-536 - Marta Arias, Roni Khardon, Rocco A. Servedio:

Polynomial Certificates for Propositional Classes. 537-551 - Shie Mannor

, Nahum Shimkin:
On-Line Learning with Imperfect Monitoring. 552-566 - Shai Ben-David, Reba Schuller:

Exploiting Task Relatedness for Mulitple Task Learning. 567-580 - Eyal Even-Dar, Yishay Mansour:

Approximate Equivalence of Markov Decision Processes. 581-594 - Ran Gilad-Bachrach

, Amir Navot, Naftali Tishby:
An Information Theoretic Tradeoff between Complexity and Accuracy. 595-609 - Jeffrey C. Jackson, Rocco A. Servedio:

Learning Random Log-Depth Decision Trees under the Uniform Distribution. 610-624 - Robert H. Sloan, Balázs Szörényi, György Turán:

Projective DNF Formulae and Their Revision. 625-639 - Aharon Bar-Hillel, Daphna Weinshall:

Learning with Equivalence Constraints and the Relation to Multiclass Learning. 640-654
Target Area: Natural Language Processing
- Michael Collins:

Tutorial: Machine Learning Methods in Natural Language Processing. 655
Invited Talks
- Mehryar Mohri:

Learning from Uncertain Data. 656-670 - Mark Johnson:

Learning and Parsing Stochastic Unification-Based Grammars. 671-683
Inductive Inference Learning
- John Case, Keh-Jiann Chen, Sanjay Jain, Wolfgang Merkle, James S. Royer:

Generality's Price: Inescapable Deficiencies in Machine-Learned Programs. 684-698 - John Case, Sanjay Jain, Franco Montagna, Giulia Simi, Andrea Sorbi:

On Learning to Coordinate: Random Bits Help, Insightful Normal Forms, and Competency Isomorphisms. 699-713 - Sanjay Jain, Efim B. Kinber, Rolf Wiehagen:

Learning All Subfunctions of a Function. 714-728
Open Problems
- Amiran Ambroladze, John Shawe-Taylor

:
When Is Small Beautiful? 729-730 - Avrim Blum:

Learning a Function of r Relevant Variables. 731-733 - Sanjoy Dasgupta:

Subspace Detection: A Robust Statistics Formulation. 734 - Sanjoy Dasgupta:

How Fast Is k-Means? 735 - Yoav Freund, Alon Orlitsky, Prasad Santhanam, Junan Zhang:

Universal Coding of Zipf Distributions. 736-737 - Marcus Hutter

:
An Open Problem Regarding the Convergence of Universal A Priori Probability. 738-740 - Vladimir Koltchinskii:

Entropy Bounds for Restricted Convex Hulls. 741-742 - Manfred K. Warmuth:

Compressing to VC Dimension Many Points. 743-744

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














