


default search action
23. ALT 2012: Lyon, France
- Nader H. Bshouty, Gilles Stoltz, Nicolas Vayatis, Thomas Zeugmann:

Algorithmic Learning Theory - 23rd International Conference, ALT 2012, Lyon, France, October 29-31, 2012. Proceedings. Lecture Notes in Computer Science 7568, Springer 2012, ISBN 978-3-642-34105-2
Editors' Introduction
- Nader H. Bshouty, Gilles Stoltz, Nicolas Vayatis, Thomas Zeugmann:

Editors' Introduction. 1-11
Invited Papers
- Luc De Raedt

:
Declarative Modeling for Machine Learning and Data Mining. 12 - Shai Shalev-Shwartz:

Learnability beyond Uniform Convergence. 13-16 - Pascal Massart, Caroline Meynet:

Some Rates of Convergence for the Selected Lasso Estimator. 17-33 - Toon Calders:

Recent Developments in Pattern Mining. 34 - Gilbert Ritschard

:
Exploring Sequential Data. 35
Regular Contributions
- Sanjay Jain, Timo Kötzing, Frank Stephan

:
Enlarging Learnable Classes. 36-50 - Ziyuan Gao, Frank Stephan

:
Confident and Consistent Partial Learning of Recursive Functions. 51-65 - Sanjay Jain, Efim B. Kinber:

Automatic Learning from Positive Data and Negative Counterexamples. 66-80 - Christophe Costa Florêncio, Sicco Verwer:

Regular Inference as Vertex Coloring. 81-95 - Rahim Samei, Pavel Semukhin

, Boting Yang, Sandra Zilles:
Sauer's Bound for a Notion of Teaching Complexity. 96-110 - Dana Angluin, James Aspnes, Aryeh Kontorovich:

On the Learnability of Shuffle Ideals. 111-123 - Mehryar Mohri, Andres Muñoz Medina:

New Analysis and Algorithm for Learning with Drifting Distributions. 124-138 - Shai Ben-David, Ruth Urner:

On the Hardness of Domain Adaptation and the Utility of Unlabeled Target Samples. 139-153 - Hal Daumé III, Jeff M. Phillips, Avishek Saha, Suresh Venkatasubramanian

:
Efficient Protocols for Distributed Classification and Optimization. 154-168 - Peter Grünwald:

The Safe Bayesian - Learning the Learning Rate via the Mixability Gap. 169-183 - Lev Reyzin:

Data Stability in Clustering: A Closer Look. 184-198 - Emilie Kaufmann, Nathaniel Korda, Rémi Munos:

Thompson Sampling: An Asymptotically Optimal Finite-Time Analysis. 199-213 - Ronald Ortner

, Daniil Ryabko, Peter Auer
, Rémi Munos:
Regret Bounds for Restless Markov Bandits. 214-228 - Alexandra Carpentier

, Rémi Munos:
Minimax Number of Strata for Online Stratified Sampling Given Noisy Samples. 229-244 - Edward Moroshko, Koby Crammer:

Weighted Last-Step Min-Max Algorithm with Improved Sub-logarithmic Regret. 245-259 - Daiki Suehiro, Kohei Hatano, Shuji Kijima

, Eiji Takimoto, Kiyohito Nagano:
Online Prediction under Submodular Constraints. 260-274 - Eyal Gofer, Yishay Mansour:

Lower Bounds on Individual Sequence Regret. 275-289 - Dmitry Adamskiy, Wouter M. Koolen, Alexey V. Chernov, Vladimir Vovk

:
A Closer Look at Adaptive Regret. 290-304 - Gábor Bartók, Csaba Szepesvári:

Partial Monitoring with Side Information. 305-319 - Tor Lattimore, Marcus Hutter

:
PAC Bounds for Discounted MDPs. 320-334 - Wouter M. Koolen, Vladimir Vovk

:
Buy Low, Sell High. 335-349 - Manfred K. Warmuth, Wojciech Kotlowski, Shuisheng Zhou

:
Kernelization of Matrix Updates, When and How? 350-364 - Mrinalkanti Ghosh, Satyadev Nandakumar

:
Predictive Complexity and Generalized Entropy Rate of Stationary Ergodic Processes. 365-379

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














