


default search action
Semi-Supervised Learning 2006
- Olivier Chapelle, Bernhard Schölkopf, Alexander Zien:

Semi-Supervised Learning. The MIT Press 2006, ISBN 9780262033589 - Olivier Chapelle, Bernhard Schölkopf, Alexander Zien:

Introduction to Semi-Supervised Learning. 1-12 - Matthias W. Seeger:

A Taxonomy for Semi-Supervised Learning Methods. 14-31 - Kamal Nigam, Andrew McCallum, Tom M. Mitchell:

Semi-Supervised Text Classification Using EM. 32-55 - Fábio Gagliardi Cozman, Ira Cohen:

Risks of Semi-Supervised Learning: How Unlabeled Data Can Degrade Performance of Generative Classifiers. 56-72 - Sugato Basu, Mikhail Bilenko, Arindam Banerjee, Raymond J. Mooney:

Probabilistic Semi-Supervised Clustering with Constraints. 73-102 - Thorsten Joachims:

Transductive Support Vector Machines. 104-117 - Tijl De Bie, Nello Cristianini:

Semi-Supervised Learning Using Semi-Definite Programming. 118-135 - Neil D. Lawrence

, Michael I. Jordan:
Gaussian Processes and the Null-Category Noise Model. 136-150 - Yves Grandvalet

, Yoshua Bengio:
Entropy Regularization. 151-168 - Adrian Corduneanu, Tommi S. Jaakkola:

Data-Dependent Regularization. 169-190 - Yoshua Bengio, Olivier Delalleau, Nicolas Le Roux:

Label Propagation and Quadratic Criterion. 192-216 - Vikas Sindhwani, Misha Belkin, Partha Niyogi:

The Geometric Basis of Semi-Supervised Learning. 217-235 - Dengyong Zhou, Bernhard Schölkopf:

Discrete Regularization. 236-249 - Christopher J. C. Burges, John C. Platt:

Semi-Supervised Learning with Conditional Harmonic Mixing. 250-273 - Xiaojin Zhu, Jaz S. Kandola, John Lafferty, Zoubin Ghahramani:

Graph Kernels by Spectral Transforms. 276-291 - Lawrence K. Saul, Kilian Q. Weinberger, Fei Sha, Jihun Ham, Daniel D. Lee:

Spectral Methods for Dimensionality Reduction. 292-308 - Alon Orlitsky:

Modifying Distances. 309-330 - Olivier Delalleau, Yoshua Bengio, Nicolas Le Roux:

Large-Scale Algorithms. 332-341 - Jason Weston, Christina S. Leslie, Eugene Ie, William Stafford Noble:

Semi-Supervised Protein Classification Using Cluster Kernels. 342-360 - Hyunjung Shin, Koji Tsuda:

Prediction of Protein Function from Networks. 361-375 - Olivier Chapelle, Bernhard Schölkopf, Alexander Zien:

Analysis of Benchmarks. 376-393 - Maria-Florina Balcan, Avrim Blum:

An Augmented PAC Model for Semi-Supervised Learning. 396-419 - Dale Schuurmans, Finnegan Southey, Dana F. Wilkinson, Yuhong Guo:

Metric-Based Approaches for Semi-Supervised Regression and Classification. 420-451 - Vladimir Vapnik:

Transductive Inference and Semi-Supervised Learning. 452-472 - Olivier Chapelle, Bernhard Schölkopf, Alexander Zien:

A Discussion of Semi-Supervised Learning and Transduction. 473-478

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














