


default search action
Guang Lin 0001
Person information
- affiliation: Purdue University, Department of Mathematics, School of Mechanical Engineering, West Lafayette, IN, USA
Other persons with the same name
- Guang Lin — disambiguation page
- Guang Lin 0002
— Tokyo University of Agriculture and Technology, Japan (and 2 more)
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2026
[j113]Haoyang Zheng
, Guang Lin
:
LES-SINDy: Laplace-enhanced sparse identification of nonlinear dynamical systems. J. Comput. Phys. 546: 114443 (2026)
[j112]Zecheng Zhang, Christian Moya
, Lu Lu
, Guang Lin
, Hayden Schaeffer
:
DeepONet as a multi-Operator extrapolation model: Distributed pretraining with physics-Informed fine-Tuning. J. Comput. Phys. 547: 114537 (2026)
[j111]Binghang Lu, Changhong Mou, Guang Lin:
iPINNER: An iterative physics-informed neural network with ensemble Kalman filter. J. Comput. Phys. 548: 114592 (2026)- 2025
[j110]MinHyuk Jang
, Jong Wook Kim
, Youngdong Jang, Donghyun Kim
, Wonseok Roh, Inyong Hwang, Guang Lin, Sangpil Kim
:
High-quality three-dimensional cartoon avatar reconstruction with Gaussian splatting. Eng. Appl. Artif. Intell. 148: 110305 (2025)
[j109]Jiahao Zhang
, Christian Moya, Guang Lin
:
A self-adaptive energy-based learning rate for stochastic gradient descent via Vector Auxiliary Variable method. Eng. Appl. Artif. Intell. 160: 111731 (2025)
[j108]Jiajun Liang, Qian Zhang, Wei Deng, Qifan Song, Guang Lin
:
Bayesian Federated Learning with Hamiltonian Monte Carlo: Algorithm and Theory. J. Comput. Graph. Stat. 34(2): 509-518 (2025)
[j107]Ziqi Guo, Daniel Carne, Krutarth Khot
, Dudong Feng, Guang Lin, Xiulin Ruan:
A Review of Artificial Intelligence-Driven Approaches for Nanoscale Heat Conduction and Radiation. J. Comput. Inf. Sci. Eng. 25(12) (2025)
[j106]Binghang Lu, Zhaopeng Hao, Christian Moya, Guang Lin
:
FPINN-deeponet: A physics-informed operator learning framework for multi-term time-fractional mixed diffusion-wave equations. J. Comput. Phys. 538: 114184 (2025)
[j105]Guang Lin
, Changhong Mou, Jiahao Zhang:
Energy-dissipative evolutionary Kolmogorov-Arnold networks for complex PDE systems. J. Comput. Phys. 541: 114326 (2025)
[j104]Amirhossein Mollaali
, Gabriel Zufferey, Gonzalo Constante-Flores
, Christian Moya, Can Li, Meng Yue, Guang Lin
:
Conformalized prediction of post-fault voltage trajectories using pre-trained and finetuned attention-driven neural operators. Neural Networks 192: 107809 (2025)
[j103]Shiheng Zhang
, Jiahao Zhang, Jie Shen
, Guang Lin
:
A Relaxed Vector Auxiliary Variable Algorithm for Unconstrained Optimization Problems. SIAM J. Sci. Comput. 47(1): 126- (2025)
[i81]Haoyang Zheng, Ruqi Zhang, Guang Lin:
Exploring Non-Convex Discrete Energy Landscapes: A Langevin-Like Sampler with Replica Exchange. CoRR abs/2501.17323 (2025)
[i80]Haoyang Zheng, Guang Lin:
Muti-Fidelity Prediction and Uncertainty Quantification with Laplace Neural Operators for Parametric Partial Differential Equations. CoRR abs/2502.00550 (2025)
[i79]Rajdeep Haldar
, Ziyi Wang, Qifan Song, Guang Lin, Yue Xing:
LLM Safety Alignment is Divergence Estimation in Disguise. CoRR abs/2502.00657 (2025)
[i78]Guang Lin, Changhong Mou, Jiahao Zhang:
Energy-Dissipative Evolutionary Kolmogorov-Arnold Networks for Complex PDE Systems. CoRR abs/2503.01618 (2025)
[i77]Cindy Xiangrui Kong, Haoyang Zheng, Guang Lin:
LAPD: Langevin-Assisted Bayesian Active Learning for Physical Discovery. CoRR abs/2503.02983 (2025)
[i76]Nick Winovich, Mitchell Daneker, Lu Lu, Guang Lin:
Active operator learning with predictive uncertainty quantification for partial differential equations. CoRR abs/2503.03178 (2025)
[i75]Zecheng Zhang, Hao Liu, Wenjing Liao, Guang Lin:
Coefficient-to-Basis Network: A Fine-Tunable Operator Learning Framework for Inverse Problems with Adaptive Discretizations and Theoretical Guarantees. CoRR abs/2503.08642 (2025)
[i74]Amirhossein Mollaali
, Christian B. Moya, Amanda A. Howard, Alexander Heinlein, Panos Stinis, Guang Lin:
Conformalized-KANs: Uncertainty Quantification with Coverage Guarantees for Kolmogorov-Arnold Networks (KANs) in Scientific Machine Learning. CoRR abs/2504.15240 (2025)
[i73]Matthieu Tehenan, Christian B. Moya, Tenghai Long, Guang Lin:
Linear Spatial World Models Emerge in Large Language Models. CoRR abs/2506.02996 (2025)
[i72]Binghang Lu
, Changhong Mou, Guang Lin:
An Evolutionary Multi-objective Optimization for Replica-Exchange-based Physics-informed Operator Learning Network. CoRR abs/2509.00663 (2025)
[i71]Haoyang Zheng, Xinyang Liu, Cindy Xiangrui Kong, Nan Jiang, Zheyuan Hu, Weijian Luo, Wei Deng, Guang Lin:
Ultra-Fast Language Generation via Discrete Diffusion Divergence Instruct. CoRR abs/2509.25035 (2025)
[i70]Weixin Wang, Haoyang Zheng, Guang Lin, Wei Deng, Pan Xu:
Rethinking Langevin Thompson Sampling from A Stochastic Approximation Perspective. CoRR abs/2510.05023 (2025)
[i69]Ziyi Wang, Nan Jiang, Guang Lin, Qifan Song:
SQS: Bayesian DNN Compression through Sparse Quantized Sub-distributions. CoRR abs/2510.08999 (2025)
[i68]Zecheng Zhang, Hao Liu, Guosheng Fu, Hayden Schaeffer, Guang Lin:
Finite Element Representation Network (FERN) for Operator Learning with a Localized Trainable Basis. CoRR abs/2510.26962 (2025)
[i67]Gyeongrok Oh, Youngdong Jang, Jonghyun Choi, Suk-Ju Kang, Guang Lin, Sangpil Kim:
ICP-4D: Bridging Iterative Closest Point and LiDAR Panoptic Segmentation. CoRR abs/2512.18991 (2025)- 2024
[j102]Yuepeng Wang, Jie Li, Wenju Zhao, I. M. Navon, Guang Lin
:
Accelerating inverse inference of ensemble Kalman filter via reduced-order model trained using adaptive sparse observations. J. Comput. Phys. 496: 112600 (2024)
[j101]Jiahao Zhang, Shiheng Zhang
, Jie Shen, Guang Lin
:
Energy-dissipative evolutionary deep operator neural networks. J. Comput. Phys. 498: 112638 (2024)
[j100]Haoyang Zheng, Yao Huang, Ziyang Huang
, Wenrui Hao
, Guang Lin
:
HomPINNs: Homotopy physics-informed neural networks for solving the inverse problems of nonlinear differential equations with multiple solutions. J. Comput. Phys. 500: 112751 (2024)
[j99]Na Ou, Zecheng Zhang, Guang Lin
:
A replica exchange preconditioned Crank-Nicolson Langevin dynamic MCMC method with multi-variance strategy for Bayesian inverse problems. J. Comput. Phys. 510: 113067 (2024)
[j98]Zecheng Zhang
, Christian Moya, Wing Tat Leung
, Guang Lin
, Hayden Schaeffer:
Bayesian Deep Operator Learning for Homogenized to Fine-Scale Maps for Multiscale PDE. Multiscale Model. Simul. 22(3): 956-972 (2024)
[c18]Wenjie Li, Qifan Song, Jean Honorio, Guang Lin
:
Federated X-armed Bandit. AAAI 2024: 13628-13636
[c17]Haoyang Zheng, Wei Deng, Christian Moya, Guang Lin:
Accelerating Approximate Thompson Sampling with Underdamped Langevin Monte Carlo. AISTATS 2024: 2611-2619
[c16]Haoyang Zheng, Hengrong Du, Qi Feng, Wei Deng, Guang Lin:
Constrained Exploration via Reflected Replica Exchange Stochastic Gradient Langevin Dynamics. ICML 2024
[c15]Wei Deng, Qian Zhang, Yian Ma, Zhao Song, Guang Lin:
On Convergence of Federated Averaging Langevin Dynamics. UAI 2024: 1022-1054
[i66]Haoyang Zheng, Wei Deng, Christian Moya, Guang Lin
:
Accelerating Approximate Thompson Sampling with Underdamped Langevin Monte Carlo. CoRR abs/2401.11665 (2024)
[i65]Christian Moya, Amirhossein Mollaali, Zecheng Zhang, Lu Lu, Guang Lin
:
Conformalized-DeepONet: A Distribution-Free Framework for Uncertainty Quantification in Deep Operator Networks. CoRR abs/2402.15406 (2024)
[i64]Haoyang Zheng, Hengrong Du, Qi Feng, Wei Deng, Guang Lin
:
Constrained Exploration via Reflected Replica Exchange Stochastic Gradient Langevin Dynamics. CoRR abs/2405.07839 (2024)
[i63]Jiajun Liang, Qian Zhang, Wei Deng, Qifan Song, Guang Lin
:
Bayesian Federated Learning with Hamiltonian Monte Carlo: Algorithm and Theory. CoRR abs/2407.06935 (2024)
[i62]Rajdeep Haldar
, Yue Xing, Qifan Song, Guang Lin
:
Adversarial Vulnerability as a Consequence of On-Manifold Inseparibility. CoRR abs/2410.06921 (2024)
[i61]Gavin Ruan, Ziqi Guo, Guang Lin
:
Where to Build Food Banks and Pantries: A Two-Level Machine Learning Approach. CoRR abs/2410.15420 (2024)
[i60]Amirhossein Mollaali
, Gabriel Zufferey, Gonzalo Constante-Flores, Christian Moya, Can Li, Guang Lin
, Meng Yue:
Conformalized Prediction of Post-Fault Voltage Trajectories Using Pre-trained and Finetuned Attention-Driven Neural Operators. CoRR abs/2410.24162 (2024)
[i59]Haoyang Zheng, Guang Lin
:
LES-SINDy: Laplace-Enhanced Sparse Identification of Nonlinear Dynamical Systems. CoRR abs/2411.01719 (2024)
[i58]Jiahao Zhang, Christian Moya, Guang Lin
:
An Energy-Based Self-Adaptive Learning Rate for Stochastic Gradient Descent: Enhancing Unconstrained Optimization with VAV method. CoRR abs/2411.06573 (2024)
[i57]Zecheng Zhang, Christian Moya, Lu Lu, Guang Lin
, Hayden Schaeffer:
DeepONet as a Multi-Operator Extrapolation Model: Distributed Pretraining with Physics-Informed Fine-Tuning. CoRR abs/2411.07239 (2024)
[i56]Dustin Enyeart, Guang Lin:
Loss Terms and Operator Forms of Koopman Autoencoders. CoRR abs/2412.04578 (2024)
[i55]Dustin Enyeart, Guang Lin:
Some Best Practices in Operator Learning. CoRR abs/2412.06686 (2024)
[i54]Dustin Enyeart, Guang Lin:
Adversarial Autoencoders in Operator Learning. CoRR abs/2412.07811 (2024)- 2023
[j97]Binghang Lu
, Christian Moya
, Guang Lin
:
NSGA-PINN: A Multi-Objective Optimization Method for Physics-Informed Neural Network Training. Algorithms 16(4): 194 (2023)
[j96]Guang Lin
, Christian Moya, Zecheng Zhang:
Learning the dynamical response of nonlinear non-autonomous dynamical systems with deep operator neural networks. Eng. Appl. Artif. Intell. 125: 106689 (2023)
[j95]Christian Moya
, Shiqi Zhang, Guang Lin
, Meng Yue:
DeepONet-grid-UQ: A trustworthy deep operator framework for predicting the power grid's post-fault trajectories. Neurocomputing 535: 166-182 (2023)
[j94]Yan Xiang
, Yu-Hang Tang
, Guang Lin
, Daniel Reker
:
Interpretable Molecular Property Predictions Using Marginalized Graph Kernels. J. Chem. Inf. Model. 63(15): 4633-4640 (2023)
[j93]Yan Xiang
, Yu-Hang Tang
, Zheng Gong, Hongyi Liu
, Liang Wu
, Guang Lin
, Huai Sun
:
Efficient Exploration of Chemical Compound Space Using Active Learning for Prediction of Thermodynamic Properties of Alkane Molecules. J. Chem. Inf. Model. 63(21): 6515-6524 (2023)
[j92]Christian Moya, Guang Lin
:
Bayesian, Multifidelity Operator Learning for Complex Engineering Systems-A Position Paper. J. Comput. Inf. Sci. Eng. 23(6) (2023)
[j91]Guang Lin
, Christian Moya
, Zecheng Zhang:
B-DeepONet: An enhanced Bayesian DeepONet for solving noisy parametric PDEs using accelerated replica exchange SGLD. J. Comput. Phys. 473: 111713 (2023)
[j90]Christian Moya
, Guang Lin
:
DAE-PINN: a physics-informed neural network model for simulating differential algebraic equations with application to power networks. Neural Comput. Appl. 35(5): 3789-3804 (2023)
[j89]Yixuan Sun
, Christian Moya
, Guang Lin
, Meng Yue
:
DeepGraphONet: A Deep Graph Operator Network to Learn and Zero-Shot Transfer the Dynamic Response of Networked Systems. IEEE Syst. J. 17(3): 4360-4370 (2023)
[j88]Xinchao Liu, Xiao Liu, Tulin Kaman, Xiaohua Lu, Guang Lin
:
Statistical Learning for Nonlinear Dynamical Systems with Applications to Aircraft-UAV Collisions. Technometrics 65(4): 564-578 (2023)
[c14]Wei Deng, Qian Zhang, Qi Feng, Faming Liang, Guang Lin:
Non-reversible Parallel Tempering for Deep Posterior Approximation. AAAI 2023: 7332-7339
[i53]Guanxun Li, Guang Lin
, Zecheng Zhang, Quan Zhou:
Fast Replica Exchange Stochastic Gradient Langevin Dynamics. CoRR abs/2301.01898 (2023)
[i52]Christian Moya, Guang Lin
, Tianqiao Zhao, Meng Yue:
On Approximating the Dynamic Response of Synchronous Generators via Operator Learning: A Step Towards Building Deep Operator-based Power Grid Simulators. CoRR abs/2301.12538 (2023)
[i51]Binghang Lu, Christian B. Moya, Guang Lin
:
NSGA-PINN: A Multi-Objective Optimization Method for Physics-Informed Neural Network Training. CoRR abs/2303.02219 (2023)
[i50]Haoyang Zheng, Yao Huang, Ziyang Huang, Wenrui Hao
, Guang Lin
:
HomPINNs: homotopy physics-informed neural networks for solving the inverse problems of nonlinear differential equations with multiple solutions. CoRR abs/2304.02811 (2023)
[i49]Guihong Wang, Yuqing Li, Tao Luo, Zheng Ma, Nung Kwan Yip, Guang Lin
:
Numerical Stability for Differential Equations with Memory. CoRR abs/2305.06571 (2023)
[i48]Izzet Sahin, Christian Moya, Amirhossein Mollaali, Guang Lin, Guillermo Paniagua:
Deep Operator Learning-based Surrogate Models with Uncertainty Quantification for Optimizing Internal Cooling Channel Rib Profiles. CoRR abs/2306.00810 (2023)
[i47]Jiahao Zhang, Shiheng Zhang, Jie Shen, Guang Lin:
Energy-Dissipative Evolutionary Deep Operator Neural Networks. CoRR abs/2306.06281 (2023)
[i46]Zecheng Zhang, Christian Moya, Wing Tat Leung, Guang Lin
, Hayden Schaeffer:
Bayesian deep operator learning for homogenized to fine-scale maps for multiscale PDE. CoRR abs/2308.14188 (2023)
[i45]Shiheng Zhang, Jiahao Zhang, Jie Shen, Guang Lin
:
An Element-wise RSAV Algorithm for Unconstrained Optimization Problems. CoRR abs/2309.04013 (2023)
[i44]Guang Lin
, Na Ou, Zecheng Zhang, Zhidong Zhang:
Restoring the Discontinuous Heat Equation Source Using Sparse Boundary Data and Dynamic Sensors. CoRR abs/2310.01541 (2023)
[i43]Yikai Liu, Ming Chen, Guang Lin
:
Backdiff: a diffusion model for generalized transferable protein backmapping. CoRR abs/2310.01768 (2023)
[i42]Zecheng Zhang, Christian Moya, Lu Lu, Guang Lin
, Hayden Schaeffer:
D2NO: Efficient Handling of Heterogeneous Input Function Spaces with Distributed Deep Neural Operators. CoRR abs/2310.18888 (2023)
[i41]Amirhossein Mollaali
, Izzet Sahin
, Iqrar Raza, Christian Moya, Guillermo Paniagua
, Guang Lin
:
A Physics-Guided Bi-Fidelity Fourier-Featured Operator Learning Framework for Predicting Time Evolution of Drag and Lift Coefficients. CoRR abs/2311.03639 (2023)
[i40]Jinwon Sohn, Qifan Song, Guang Lin
:
Fair Supervised Learning with A Simple Random Sampler of Sensitive Attributes. CoRR abs/2311.05866 (2023)
[i39]Zhihao Kong, Amirhossein Mollaali, Christian Moya, Na Lu, Guang Lin
:
B-LSTM-MIONet: Bayesian LSTM-based Neural Operators for Learning the Response of Complex Dynamical Systems to Length-Variant Multiple Input Functions. CoRR abs/2311.16519 (2023)
[i38]Yikai Liu, Tushar K. Ghosh, Guang Lin
, Ming Chen:
Unbiasing Enhanced Sampling on a High-dimensional Free Energy Surface with Deep Generative Model. CoRR abs/2312.09404 (2023)- 2022
[j87]Christian Moya
, Guang Lin
:
Fed-DeepONet: Stochastic Gradient-Based Federated Training of Deep Operator Networks. Algorithms 15(9): 325 (2022)
[j86]Yao Huang
, Wenrui Hao
, Guang Lin
:
HomPINNs: Homotopy physics-informed neural networks for learning multiple solutions of nonlinear elliptic differential equations. Comput. Math. Appl. 121: 62-73 (2022)
[j85]Georgios Karagiannis
, Zhangshuan Hou
, Maoyi Huang, Guang Lin
:
Inverse Modeling of Hydrologic Parameters in CLM4 via Generalized Polynomial Chaos in the Bayesian Framework. Comput. 10(5): 72 (2022)
[j84]Shruthi Suresh, David T. Newton, Thomas H. Everett, Guang Lin
, Bradley S. Duerstock
:
Feature Selection Techniques for a Machine Learning Model to Detect Autonomic Dysreflexia. Frontiers Neuroinformatics 16 (2022)
[j83]Suman Chakraborty
, Yixuan Sun
, Guang Lin
, Li Qiao
:
Vapor-liquid equilibrium estimation of n-alkane/nitrogen mixtures using neural networks. J. Comput. Appl. Math. 408: 114059 (2022)
[j82]Ziyang Huang
, Guang Lin
, Arezoo Motavalizadeh Ardekani
:
A consistent and conservative Phase-Field method for multiphase incompressible flows. J. Comput. Appl. Math. 408: 114116 (2022)
[j81]Dongwu Wang, Bin Zheng, Long Chen
, Guang Lin
, Jinchao Xu:
Block triangular preconditioning for stochastic Galerkin method. J. Comput. Appl. Math. 412: 114298 (2022)
[j80]Ziyang Huang
, Guang Lin
, Arezoo Motavalizadeh Ardekani:
A consistent and conservative Phase-Field model for thermo-gas-liquid-solid flows including liquid-solid phase change. J. Comput. Phys. 449: 110795 (2022)
[j79]Guang Lin
, Yating Wang, Zecheng Zhang:
Multi-variance replica exchange SGMCMC for inverse and forward problems via Bayesian PINN. J. Comput. Phys. 460: 111173 (2022)
[j78]Liyao Gao, Yifan Du
, Hongshan Li, Guang Lin
:
RotEqNet: Rotation-equivariant network for fluid systems with symmetric high-order tensors. J. Comput. Phys. 461: 111205 (2022)
[j77]Yalchin Efendiev, Wing Tat Leung
, Guang Lin
, Zecheng Zhang:
Efficient hybrid explicit-implicit learning for multiscale problems. J. Comput. Phys. 467: 111326 (2022)
[j76]Hugo Esquivel
, Arun Prakash
, Guang Lin
:
Multi-element flow-driven spectral chaos (ME-FSC) method for uncertainty quantification of dynamical systems. J. Comput. Phys. 467: 111425 (2022)
[j75]Wing Tat Leung, Guang Lin
, Zecheng Zhang:
NH-PINN: Neural homogenization-based physics-informed neural network for multiscale problems. J. Comput. Phys. 470: 111539 (2022)
[j74]Ziyang Huang
, Guang Lin
, Arezoo Motavalizadeh Ardekani:
Implementing contact angle boundary conditions for second-order Phase-Field models of wall-bounded multiphase flows. J. Comput. Phys. 471: 111619 (2022)
[j73]Yating Wang, Wing Tat Leung, Guang Lin
:
AMS-Net: Adaptive Multiscale Sparse Neural Network with Interpretable Basis Expansion for Multiphase Flow Problems. Multiscale Model. Simul. 20(1): 618-640 (2022)
[j72]Haoyang Zheng
, Jeffrey R. Petrella
, P. Murali Doraiswamy, Guang Lin
, Wenrui Hao
:
Data-driven causal model discovery and personalized prediction in Alzheimer's disease. npj Digit. Medicine 5 (2022)
[j71]Wei Deng, Guang Lin
, Faming Liang
:
An adaptively weighted stochastic gradient MCMC algorithm for Monte Carlo simulation and global optimization. Stat. Comput. 32(4): 58 (2022)
[j70]Tehuan Chen
, Zhigang Ren
, Guang Lin
, Chao Xu
:
Learning-PDE-Based Approximate Optimal Control for an MHD System With Uncertainty Quantification. IEEE Trans. Syst. Man Cybern. Syst. 52(11): 7185-7192 (2022)
[c13]Carson Hu, Guang Lin
, Bao Wang, Meng Yue, Jack Xin:
Post-Fault Power Grid Voltage Prediction via 1D-CNN with Spatial Coupling. AI4I 2022: 35-37
[c12]Yunling Zheng, Carson Hu, Guang Lin
, Meng Yue, Bao Wang, Jack Xin:
Glassoformer: A Query-Sparse Transformer for Post-Fault Power Grid Voltage Prediction. ICASSP 2022: 3968-3972
[c11]Wei Deng, Siqi Liang, Botao Hao, Guang Lin, Faming Liang:
Interacting Contour Stochastic Gradient Langevin Dynamics. ICLR 2022
[i37]Yunling Zheng, Carson Hu, Guang Lin, Meng Yue, Bao Wang, Jack Xin:
glassoformer: a query-sparse transformer for post-fault power grid voltage prediction. CoRR abs/2201.09145 (2022)
[i36]Christian Moya, Shiqi Zhang, Meng Yue, Guang Lin:
DeepONet-Grid-UQ: A Trustworthy Deep Operator Framework for Predicting the Power Grid's Post-Fault Trajectories. CoRR abs/2202.07176 (2022)
[i35]Wei Deng, Siqi Liang, Botao Hao, Guang Lin, Faming Liang:
Interacting Contour Stochastic Gradient Langevin Dynamics. CoRR abs/2202.09867 (2022)
[i34]Jiahao Zhang, Shiqi Zhang, Guang Lin
:
PAGP: A physics-assisted Gaussian process framework with active learning for forward and inverse problems of partial differential equations. CoRR abs/2204.02583 (2022)
[i33]Jiahao Zhang, Shiqi Zhang, Guang Lin
:
MultiAuto-DeepONet: A Multi-resolution Autoencoder DeepONet for Nonlinear Dimension Reduction, Uncertainty Quantification and Operator Learning of Forward and Inverse Stochastic Problems. CoRR abs/2204.03193 (2022)
[i32]Jiahao Zhang, Shiqi Zhang, Guang Lin
:
RMFGP: Rotated Multi-fidelity Gaussian process with Dimension Reduction for High-dimensional Uncertainty Quantification. CoRR abs/2204.04819 (2022)
[i31]Sheng Zhang, Guang Lin
, Samy Tindel:
2-d signature of images and texture classification. CoRR abs/2205.11236 (2022)
[i30]Wenjie Li, Qifan Song, Jean Honorio
, Guang Lin:
Federated X-Armed Bandit. CoRR abs/2205.15268 (2022)
[i29]Guang Lin
, Christian Moya, Zecheng Zhang:
On Learning the Dynamical Response of Nonlinear Control Systems with Deep Operator Networks. CoRR abs/2206.06536 (2022)
[i28]Hugo Esquivel, Arun Prakash
, Guang Lin
:
Multi-element flow-driven spectral chaos (ME-FSC) method for uncertainty quantification of dynamical systems. CoRR abs/2207.10281 (2022)
[i27]Yating Wang, Wing Tat Leung, Guang Lin
:
AMS-Net: Adaptive Multiscale Sparse Neural Network with Interpretable Basis Expansion for Multiphase Flow Problems. CoRR abs/2207.11735 (2022)
[i26]Yan Xiang, Yu-Hang Tang, Zheng Gong, Hongyi Liu, Liang Wu
, Guang Lin
, Huai Sun:
Efficient Chemical Space Exploration Using Active Learning Based on Marginalized Graph Kernel: an Application for Predicting the Thermodynamic Properties of Alkanes with Molecular Simulation. CoRR abs/2209.00514 (2022)
[i25]Yixuan Sun
, Christian Moya, Guang Lin
, Meng Yue:
DeepGraphONet: A Deep Graph Operator Network to Learn and Zero-shot Transfer the Dynamic Response of Networked Systems. CoRR abs/2209.10622 (2022)
[i24]Na Ou, Zecheng Zhang, Guang Lin
:
A replica exchange preconditioned Crank-Nicolson Langevin dynamic MCMC method for Bayesian inverse problems. CoRR abs/2210.17048 (2022)
[i23]Wei Deng, Qian Zhang, Qi Feng, Faming Liang, Guang Lin
:
Non-reversible Parallel Tempering for Deep Posterior Approximation. CoRR abs/2211.10837 (2022)- 2021
[j69]Shichao Zhou, Guang Lin
, Qinfang Qian, Chao Xu:
Binary classification of floor vibrations for human activity detection based on dynamic mode decomposition. Neurocomputing 432: 227-239 (2021)
[j68]Jun Man
, Guang Lin
, Yijun Yao, Lingzao Zeng:
A generalized multi-fidelity simulation method using sparse polynomial chaos expansion. J. Comput. Appl. Math. 397: 113613 (2021)
[j67]Hugo Esquivel
, Arun Prakash
, Guang Lin
:
Flow-driven spectral chaos (FSC) method for long-time integration of second-order stochastic dynamical systems. J. Comput. Appl. Math. 398: 113674 (2021)
[j66]Yan Xiang
, Yu-Hang Tang
, Guang Lin
, Huai Sun
:
A Comparative Study of Marginalized Graph Kernel and Message-Passing Neural Network. J. Chem. Inf. Model. 61(11): 5414-5424 (2021)
[j65]Sheng Zhang
, Guang Lin
:
SubTSBR to tackle high noise and outliers for data-driven discovery of differential equations. J. Comput. Phys. 428: 109962 (2021)
[j64]Yuepeng Wang, Xuemei Ding, Kun Hu, Fangxin Fang
, I. M. Navon
, Guang Lin
:
Feasibility of DEIM for retrieving the initial field via dimensionality reduction. J. Comput. Phys. 429: 110005 (2021)
[j63]Hugo Esquivel
, Arun Prakash
, Guang Lin
:
Flow-driven spectral chaos (FSC) method for simulating long-time dynamics of arbitrary-order non-linear stochastic dynamical systems. J. Comput. Phys. 430: 110044 (2021)
[j62]Yating Wang, Wei Deng, Guang Lin
:
Bayesian sparse learning with preconditioned stochastic gradient MCMC and its applications. J. Comput. Phys. 432: 110134 (2021)
[j61]Yating Wang, Wei Deng, Guang Lin
:
An adaptive Hessian approximated stochastic gradient MCMC method. J. Comput. Phys. 432: 110150 (2021)
[j60]Ziyang Huang
, Guang Lin
, Arezoo Motavalizadeh Ardekani:
A consistent and conservative model and its scheme for N-phase-M-component incompressible flows. J. Comput. Phys. 434: 110229 (2021)
[j59]Ehsan Kharazmi, Min Cai, Xiaoning Zheng
, Zhen Zhang, Guang Lin
, George Em Karniadakis
:
Identifiability and predictability of integer- and fractional-order epidemiological models using physics-informed neural networks. Nat. Comput. Sci. 1(11): 744-753 (2021)
[j58]Sheng Zhang
, Joan Ponce
, Zhen Zhang
, Guang Lin
, George E. Karniadakis
:
An integrated framework for building trustworthy data-driven epidemiological models: Application to the COVID-19 outbreak in New York City. PLoS Comput. Biol. 17(9) (2021)
[j57]Jiuhai Chen, Lulu Kang
, Guang Lin
:
Gaussian Process Assisted Active Learning of Physical Laws. Technometrics 63(3): 329-342 (2021)
[c10]Wei Deng, Qi Feng, Georgios Karagiannis
, Guang Lin, Faming Liang:
Accelerating Convergence of Replica Exchange Stochastic Gradient MCMC via Variance Reduction. ICLR 2021
[c9]Wei Deng, Junwei Pan, Tian Zhou, Deguang Kong, Aaron Flores, Guang Lin
:
DeepLight: Deep Lightweight Feature Interactions for Accelerating CTR Predictions in Ad Serving. WSDM 2021: 922-930
[i22]Ziyang Huang, Guang Lin, Arezoo Motavalizadeh Ardekani:
A consistent and conservative model and its scheme for N-phase-M-component incompressible flows. CoRR abs/2101.04252 (2021)
[i21]Ziyang Huang, Guang Lin, Arezoo Motavalizadeh Ardekani:
A consistent and conservative Phase-Field model for thermo-gas-liquid-solid flows including liquid-solid phase change. CoRR abs/2102.06863 (2021)
[i20]Ziyang Huang, Guang Lin, Arezoo Motavalizadeh Ardekani:
Implementing contact angle boundary conditions for second-order Phase-Field models of wall-bounded multiphase flows. CoRR abs/2103.07839 (2021)
[i19]Hugo Esquivel, Arun Prakash, Guang Lin:
Flow-driven spectral chaos (FSC) method for long-time integration of second-order stochastic dynamical systems. CoRR abs/2105.10544 (2021)
[i18]Guang Lin, Yating Wang, Zecheng Zhang:
Multi-variance replica exchange stochastic gradient MCMC for inverse and forward Bayesian physics-informed neural network. CoRR abs/2107.06330 (2021)
[i17]Wing Tat Leung, Guang Lin, Zecheng Zhang:
NH-PINN: Neural homogenization based physics-informed neural network for multiscale problems. CoRR abs/2108.12942 (2021)
[i16]Yalchin Efendiev, Wing Tat Leung, Guang Lin, Zecheng Zhang:
HEI: hybrid explicit-implicit learning for multiscale problems. CoRR abs/2109.02147 (2021)
[i15]Christian Moya, Guang Lin:
DAE-PINN: A Physics-Informed Neural Network Model for Simulating Differential-Algebraic Equations with Application to Power Networks. CoRR abs/2109.04304 (2021)
[i14]Haoyang Zheng, Ziyang Huang, Guang Lin:
PCNN: A physics-constrained neural network for multiphase flows. CoRR abs/2109.08965 (2021)
[i13]Guang Lin, Zecheng Zhang, Zhidong Zhang:
Theoretical and numerical studies of inverse source problem for the linear parabolic equation with sparse boundary measurements. CoRR abs/2111.02285 (2021)
[i12]Guang Lin, Christian Moya, Zecheng Zhang:
Accelerated replica exchange stochastic gradient Langevin diffusion enhanced Bayesian DeepONet for solving noisy parametric PDEs. CoRR abs/2111.02484 (2021)
[i11]Wei Deng, Yi-An Ma, Zhao Song, Qian Zhang, Guang Lin:
On Convergence of Federated Averaging Langevin Dynamics. CoRR abs/2112.05120 (2021)- 2020
[j56]Zhaopeng Hao, Guang Lin
, Zhongqiang Zhang
:
Error estimates of a spectral Petrov-Galerkin method for two-sided fractional reaction-diffusion equations. Appl. Math. Comput. 374: 125045 (2020)
[j55]Yiqi Gu
, Xi Yang, Mengjiao Peng, Guang Lin
:
Robust weighted SVD-type latent factor models for rating prediction. Expert Syst. Appl. 141 (2020)
[j54]Yating Wang, Guang Lin
:
Efficient deep learning techniques for multiphase flow simulation in heterogeneous porousc media. J. Comput. Phys. 401 (2020)
[j53]Ziyang Huang
, Guang Lin
, Arezoo Motavalizadeh Ardekani:
Consistent, essentially conservative and balanced-force Phase-Field method to model incompressible two-phase flows. J. Comput. Phys. 406: 109192 (2020)
[j52]Ziyang Huang
, Guang Lin
, Arezoo Motavalizadeh Ardekani:
Consistent and conservative scheme for incompressible two-phase flows using the conservative Allen-Cahn model. J. Comput. Phys. 420: 109718 (2020)
[j51]Tehuan Chen
, Zhigang Ren
, Guang Lin
, Zongze Wu, Bao-Lin Ye:
Real-time computational optimal control of an MHD flow system with parameter uncertainty quantification. J. Frankl. Inst. 357(5): 2830-2850 (2020)
[j50]Wenrui Hao
, Jan S. Hesthaven, Guang Lin
, Bin Zheng
:
A Homotopy Method with Adaptive Basis Selection for Computing Multiple Solutions of Differential Equations. J. Sci. Comput. 82(1): 19 (2020)
[j49]Na Ou, Guang Lin
, Lijian Jiang:
A Low-Rank Approximated Multiscale Method for Pdes With Random Coefficients. Multiscale Model. Simul. 18(4): 1595-1620 (2020)
[j48]Sangpil Kim
, Nick Winovich
, Hyung-Gun Chi
, Guang Lin
, Karthik Ramani
:
Latent transformations neural network for object view synthesis. Vis. Comput. 36(8): 1663-1677 (2020)
[c8]Wei Deng, Qi Feng, Liyao Gao, Faming Liang, Guang Lin:
Non-convex Learning via Replica Exchange Stochastic Gradient MCMC. ICML 2020: 2474-2483
[c7]Wei Deng, Guang Lin, Faming Liang:
A Contour Stochastic Gradient Langevin Dynamics Algorithm for Simulations of Multi-modal Distributions. NeurIPS 2020
[c6]Jiaming Li, Meng Yue, Yue Zhao, Guang Lin
:
Machine-Learning-Based Online Transient Analysis via Iterative Computation of Generator Dynamics. SmartGridComm 2020: 1-6
[i10]Wei Deng, Junwei Pan, Tian Zhou, Aaron Flores, Guang Lin:
DeepLight: Deep Lightweight Feature Interactions for Accelerating CTR Predictions in Ad Serving. CoRR abs/2002.06987 (2020)
[i9]Yating Wang, Wei Deng, Guang Lin:
Bayesian Sparse learning with preconditioned stochastic gradient MCMC and its applications. CoRR abs/2006.16376 (2020)
[i8]Wei Deng, Qi Feng
, Liyao Gao
, Faming Liang, Guang Lin:
Non-convex Learning via Replica Exchange Stochastic Gradient MCMC. CoRR abs/2008.05367 (2020)
[i7]Wei Deng, Qi Feng
, Georgios Karagiannis, Guang Lin, Faming Liang:
Accelerating Convergence of Replica Exchange Stochastic Gradient MCMC via Variance Reduction. CoRR abs/2010.01084 (2020)
[i6]Yating Wang, Wei Deng, Guang Lin:
An adaptive Hessian approximated stochastic gradient MCMC method. CoRR abs/2010.01384 (2020)
[i5]Wei Deng, Guang Lin, Faming Liang:
A Contour Stochastic Gradient Langevin Dynamics Algorithm for Simulations of Multi-modal Distributions. CoRR abs/2010.09800 (2020)
[i4]Hugo Esquivel, Arun Prakash, Guang Lin:
Flow-driven spectral chaos (FSC) method for simulating long-time dynamics of arbitrary-order non-linear stochastic dynamical systems. CoRR abs/2012.01496 (2020)
2010 – 2019
- 2019
[j47]Yu Huang
, Qingshan Xu, Sajjad Abedi, Tong Zhang, Xianqiang Jiang, Guang Lin
:
Stochastic Security Assessment for Power Systems With High Renewable Energy Penetration Considering Frequency Regulation. IEEE Access 7: 6450-6460 (2019)
[j46]Jun Yang
, Wei Wang
, Guang Lin
, Qing Li
, Yeqing Sun, Yixuan Sun
:
Infrared Thermal Imaging-Based Crack Detection Using Deep Learning. IEEE Access 7: 182060-182077 (2019)
[j45]Yuepeng Wang, Kun Hu, Lanlan Ren, Guang Lin
:
Optimal observations-based retrieval of topography in 2D shallow water equations using PC-EnKF. J. Comput. Phys. 382: 43-60 (2019)
[j44]Ziyang Huang
, Guang Lin
, Arezoo Motavalizadeh Ardekani:
A mixed upwind/central WENO scheme for incompressible two-phase flows. J. Comput. Phys. 387: 455-480 (2019)
[j43]Nick Winovich
, Karthik Ramani, Guang Lin
:
ConvPDE-UQ: Convolutional neural networks with quantified uncertainty for heterogeneous elliptic partial differential equations on varied domains. J. Comput. Phys. 394: 263-279 (2019)
[j42]Zhaopeng Hao, Moongyu Park
, Guang Lin
, Zhiqiang Cai
:
Finite Element Method for Two-Sided Fractional Differential Equations with Variable Coefficients: Galerkin Approach. J. Sci. Comput. 79(2): 700-717 (2019)
[c5]Liyao Gao
, Hongshan Li, Zheying Lu, Guang Lin
:
Rotation-equivariant convolutional neural network ensembles in image processing. UbiComp/ISWC Adjunct 2019: 551-557
[c4]Wei Deng, Xiao Zhang, Faming Liang, Guang Lin:
An Adaptive Empirical Bayesian Method for Sparse Deep Learning. NeurIPS 2019: 5564-5574
[i3]Wei Deng, Xiao Zhang, Faming Liang, Guang Lin:
An Adaptive Empirical Bayesian Method for Sparse Deep Learning. CoRR abs/1910.10791 (2019)- 2018
[j41]Mu Wang, Guang Lin
, Alex Pothen
:
Using automatic differentiation for compressive sensing in uncertainty quantification. Optim. Methods Softw. 33(4-6): 799-812 (2018)
[j40]Yingwei Wang, Wenrui Hao
, Guang Lin
:
Two-Level Spectral Methods for Nonlinear Elliptic Equations with Multiple Solutions. SIAM J. Sci. Comput. 40(4): B1180-B1205 (2018)
[c3]Yixuan Sun
, Xiaoyuan Fan
, Qiuhua Huang, Xinya Li, Renke Huang, Tianzhixi Yin
, Guang Lin
:
Local Feature Sufficiency Exploration for Predicting Security-Constrained Generation Dispatch in Multi-area Power Systems. ICMLA 2018: 1283-1289
[i2]Sangpil Kim, Nick Winovich, Guang Lin, Karthik Ramani:
CT-GAN: Conditional Transformation Generative Adversarial Network for Image Attribute Modification. CoRR abs/1807.04812 (2018)- 2017
[j39]Zhao-peng Hao, Guang Lin
, Zhi-Zhong Sun:
A high-order difference scheme for the fractional sub-diffusion equation. Int. J. Comput. Math. 94(2): 405-426 (2017)
[j38]Zhaopeng Hao, Wanrong Cao, Guang Lin
:
A second-order difference scheme for the time fractional substantial diffusion equation. J. Comput. Appl. Math. 313: 54-69 (2017)
[j37]Luoping Chen, Bin Zheng, Guang Lin
, Nikolaos K. Voulgarakis:
A two-level stochastic collocation method for semilinear elliptic equations with random coefficients. J. Comput. Appl. Math. 315: 195-207 (2017)
[j36]Georgios Karagiannis
, Guang Lin
:
On the Bayesian calibration of computer model mixtures through experimental data, and the design of predictive models. J. Comput. Phys. 342: 139-160 (2017)
[j35]Georgios Karagiannis
, Bledar A. Konomi
, Guang Lin
, Faming Liang:
Parallel and interacting stochastic approximation annealing algorithms for global optimisation. Stat. Comput. 27(4): 927-945 (2017)
[j34]Emilie Purvine, Eduardo Cotilla Sanchez, Mahantesh Halappanavar, Zhenyu Huang, Guang Lin
, Shuai Lu, Shaobu Wang
:
Comparative study of clustering techniques for real-time dynamic model reduction. Stat. Anal. Data Min. 10(5): 263-276 (2017)
[j33]Junpeng Wang, Xiaotong Liu, Han-Wei Shen, Guang Lin
:
Multi-Resolution Climate Ensemble Parameter Analysis with Nested Parallel Coordinates Plots. IEEE Trans. Vis. Comput. Graph. 23(1): 81-90 (2017)
[j32]Ayan Biswas
, Guang Lin
, Xiaotong Liu, Han-Wei Shen:
Visualization of Time-Varying Weather Ensembles across Multiple Resolutions. IEEE Trans. Vis. Comput. Graph. 23(1): 841-850 (2017)- 2016
[j31]Yuzhou Sun, Pengtao Sun, Bin Zheng, Guang Lin
:
Error analysis of finite element method for Poisson-Nernst-Planck equations. J. Comput. Appl. Math. 301: 28-43 (2016)
[j30]Xiu Yang, Huan Lei, Nathan A. Baker
, Guang Lin
:
Enhancing sparsity of Hermite polynomial expansions by iterative rotations. J. Comput. Phys. 307: 94-109 (2016)
[j29]Hongqiao Wang
, Guang Lin
, Jinglai Li
:
Gaussian process surrogates for failure detection: A Bayesian experimental design approach. J. Comput. Phys. 313: 247-259 (2016)
[j28]Qifeng Liao, Guang Lin
:
Reduced basis ANOVA methods for partial differential equations with high-dimensional random inputs. J. Comput. Phys. 317: 148-164 (2016)
[j27]Weixuan Li, Guang Lin
, Bing Li:
Inverse regression-based uncertainty quantification algorithms for high-dimensional models: Theory and practice. J. Comput. Phys. 321: 259-278 (2016)
[j26]Victor Ginting
, Guang Lin
, Jiangguo Liu:
On Application of the Weak Galerkin Finite Element Method to a Two-Phase Model for Subsurface Flow. J. Sci. Comput. 66(1): 225-239 (2016)
[j25]Ido Bright, Guang Lin
, J. Nathan Kutz:
Classification of Spatiotemporal Data via Asynchronous Sparse Sampling: Application to Flow around a Cylinder. Multiscale Model. Simul. 14(2): 823-838 (2016)
[j24]Li Li, Yongqing Yang, Guang Lin
:
The stabilization of BAM neural networks with time-varying delays in the leakage terms via sampled-data control. Neural Comput. Appl. 27(2): 447-457 (2016)- 2015
[j23]Guang Lin
, Jiangguo Liu, Farrah Sadre-Marandi:
A comparative study on the weak Galerkin, discontinuous Galerkin, and mixed finite element methods. J. Comput. Appl. Math. 273: 346-362 (2015)
[j22]Wenrui Hao
, Zhiliang Xu, Chun Liu, Guang Lin
:
A fictitious domain method with a hybrid cell model for simulating motion of cells in fluid flow. J. Comput. Phys. 280: 345-362 (2015)
[j21]Georgios Karagiannis
, Bledar A. Konomi
, Guang Lin
:
A Bayesian mixed shrinkage prior procedure for spatial-stochastic basis selection and evaluation of gPC expansions: Applications to elliptic SPDEs. J. Comput. Phys. 284: 528-546 (2015)
[j20]Weixuan Li
, Guang Lin
:
An adaptive importance sampling algorithm for Bayesian inversion with multimodal distributions. J. Comput. Phys. 294: 173-190 (2015)
[j19]Jinglai Li
, Guang Lin
, Xu Yang
:
A frozen Gaussian approximation-based multi-level particle swarm optimization for seismic inversion. J. Comput. Phys. 296: 58-71 (2015)
[j18]Bohai Zhang
, Bledar A. Konomi
, Huiyan Sang, Georgios Karagiannis
, Guang Lin
:
Full scale multi-output Gaussian process emulator with nonseparable auto-covariance functions. J. Comput. Phys. 300: 623-642 (2015)
[j17]Huan Lei, Xiu Yang, Bin Zheng, Guang Lin
, Nathan A. Baker
:
Constructing Surrogate Models of Complex Systems with Enhanced Sparsity: Quantifying the Influence of Conformational Uncertainty in Biomolecular Solvation. Multiscale Model. Simul. 13(4): 1327-1353 (2015)
[i1]Emilie Hogan, Eduardo Cotilla Sanchez, Mahantesh Halappanavar, Zhenyu Huang, Guang Lin, Shuai Lu, Shaobu Wang:
Comparative Studies of Clustering Techniques for Real-Time Dynamic Model Reduction. CoRR abs/1501.00943 (2015)- 2014
[j16]Weixuan Li, Guang Lin
, Dongxiao Zhang
:
An adaptive ANOVA-based PCKF for high-dimensional nonlinear inverse modeling. J. Comput. Phys. 258: 752-772 (2014)
[j15]Georgios Karagiannis
, Guang Lin
:
Selection of polynomial chaos bases via Bayesian model uncertainty methods with applications to sparse approximation of PDEs with stochastic inputs. J. Comput. Phys. 259: 114-134 (2014)
[j14]Guang Lin
, Jiangguo Liu, Lin Mu
, Xiu Ye:
Weak Galerkin finite element methods for Darcy flow: Anisotropy and heterogeneity. J. Comput. Phys. 276: 422-437 (2014)
[j13]Gongjun Xu, Guang Lin
, Jingchen Liu:
Rare-Event Simulation for the Stochastic Korteweg-de Vries Equation. SIAM/ASA J. Uncertain. Quantification 2(1): 698-716 (2014)
[j12]Bledar A. Konomi
, Georgios Karagiannis
, Avik Sarkar, Xin Sun
, Guang Lin
:
Bayesian Treed Multivariate Gaussian Process With Adaptive Design: Application to a Carbon Capture Unit. Technometrics 56(2): 145-158 (2014)- 2013
[j11]Jie Bao, Zhijie Xu
, Guang Lin
, Yilin Fang:
Evaluating the impact of aquifer layer properties on geomechanical response during CO2 geological sequestration. Comput. Geosci. 54: 28-37 (2013)
[j10]Zhongqiang Zhang
, Xiu Yang, Guang Lin
, George E. Karniadakis:
Numerical solution of the Stratonovich- and Ito-Euler equations: Application to the stochastic piston problem. J. Comput. Phys. 236: 15-27 (2013)
[j9]Ilias Bilionis
, Nicholas Zabaras, Bledar A. Konomi
, Guang Lin
:
Multi-output separable Gaussian process: Towards an efficient, fully Bayesian paradigm for uncertainty quantification. J. Comput. Phys. 241: 212-239 (2013)
[j8]Xiaoliang Wan, Guang Lin
:
Hybrid parallel computing of minimum action method. Parallel Comput. 39(10): 638-651 (2013)
[c2]Guang Lin
, Binh Han, Jian Yin, Ian Gorton:
Exploring Cloud Computing for Large-Scale Scientific Applications. SERVICES 2013: 37-43- 2012
[j7]Xiu Yang, Minseok Choi, Guang Lin
, George E. Karniadakis:
Adaptive ANOVA decomposition of stochastic incompressible and compressible flows. J. Comput. Phys. 231(4): 1587-1614 (2012)- 2011
[j6]Zhiliang Xu, Yingjie Liu, Huijing Du, Guang Lin
, Chi-Wang Shu
:
Point-wise hierarchical reconstruction for discontinuous Galerkin and finite volume methods for solving conservation laws. J. Comput. Phys. 230(17): 6843-6865 (2011)
[c1]Jian Yin, Guang Lin
, Ian Gorton, Binh Han:
MeDiCi-Cloud: A Workflow Infrastructure for Large-scale Scientific Applications. UCC 2011: 336-337- 2010
[j5]Guang Lin
, Alexandre M. Tartakovsky, Daniel M. Tartakovsky
:
Uncertainty quantification via random domain decomposition and probabilistic collocation on sparse grids. J. Comput. Phys. 229(19): 6995-7012 (2010)
[j4]Guang Lin
, Alexandre M. Tartakovsky:
Numerical Studies of Three-dimensional Stochastic Darcy's Equation and Stochastic Advection-Diffusion-Dispersion Equation. J. Sci. Comput. 43(1): 92-117 (2010)
2000 – 2009
- 2007
[j3]Guang Lin
, Xiaoliang Wan, Chau-Hsing Su, George E. Karniadakis:
Stochastic Computational Fluid Mechanics. Comput. Sci. Eng. 9(2): 21-29 (2007)- 2006
[j2]Guang Lin
, Leopold Grinberg, George E. Karniadakis:
Numerical studies of the stochastic Korteweg-de Vries equation. J. Comput. Phys. 213(2): 676-703 (2006)
[j1]Guang Lin
, Chau-Hsing Su, George E. Karniadakis:
Predicting shock dynamics in the presence of uncertainties. J. Comput. Phys. 217(1): 260-276 (2006)
Coauthor Index

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from
to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the
of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from
,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from
and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from
.
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2026-01-28 05:01 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID







