


default search action
16th UAI 2000: Stanford, California, USA
- Craig Boutilier, Moisés Goldszmidt:

UAI '00: Proceedings of the 16th Conference in Uncertainty in Artificial Intelligence, Stanford University, Stanford, California, USA, June 30 - July 3, 2000. Morgan Kaufmann 2000, ISBN 1-55860-709-9 - Teresa Alsinet, Lluís Godo:

A Complete Calcultis for Possibilistic Logic Programming with Fuzzy Propositional Variables. 1-10 - Christophe Andrieu, Nando de Freitas, Arnaud Doucet:

Reversible Jump MCMC Simulated Annealing for Neural Networks. 11-18 - Ann Becker, Dan Geiger, Christopher Meek:

Perfect Tree-like Markovian Distributions. 19-23 - Daniel S. Bernstein, Shlomo Zilberstein, Neil Immerman:

The Complexity of Decentralized Control of Markov Decision Processes. 32-37 - Jeff A. Bilmes:

Dynamic Bayesian Multinets. 38-45 - Christopher M. Bishop, Michael E. Tipping:

Variational Relevance Vector Machines. 46-53 - Craig Boutilier:

Approximately Optimal Monitoring of Plan Preconditions. 54-62 - Urszula Chajewska, Daphne Koller:

Utilities as Random Variables: Density Estimation and Structure Discovery. 63-71 - Jian Cheng, Marek J. Druzdzel:

Computational Investigation of Low-Discrepancy Sequences in Simulation Algorithms for Bayesian Networks. 72-81 - David Maxwell Chickering, David Heckerman:

A Decision Theoretic Approach to Targeted Advertising. 82-88 - Frans Coetzee, Steve Lawrence, C. Lee Giles:

Bayesian Classification and Feature Selection from Finite Data Sets. 89-97 - Gregory F. Cooper:

A Bayesian Method for Causal Modeling and Discovery Under Selection. 98-106 - Fábio Gagliardi Cozman:

Separation Properties of Sets of Probability Measures. 107-114 - James Cussens:

Stochastic Logic Programs: Sampling, Inference and Applications. 115-122 - Adnan Darwiche:

A Differential Approach to Inference in Bayesian Networks. 123-132 - Adnan Darwiche:

Any-Space Probabilistic Inference. 133-142 - Sanjoy Dasgupta:

Experiments with Random Projection. 143-151 - Sanjoy Dasgupta, Leonard J. Schulman:

A Two-Round Variant of EM for Gaussian Mixtures. 152-159 - Ian Davidson:

Minimum Message Length Clustering Using Gibbs Sampling. 160-167 - Scott Davies, Andrew W. Moore:

Mix-nets: Factored Mixtures of Gaussians in Bayesian Networks with Mixed Continuous And Discrete Variables. 168-175 - Arnaud Doucet, Nando de Freitas, Kevin P. Murphy, Stuart Russell:

Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks. 176-183 - Brendan J. Frey, Nebojsa Jojic:

Learning Graphical Models of Images, Videos and Their Spatial Transformations. 184-191 - Nir Friedman, Dan Geiger, Noam Lotner:

Likelihood Computations Using Value Abstraction. 192-200 - Nir Friedman, Daphne Koller:

Being Bayesian about Network Structure. 201-210 - Nir Friedman, Iftach Nachman:

Gaussian Process Networks. 211-219 - Phan Hong Giang, Prakash P. Shenoy:

A Qualitative Linear Utility Theory for Spohn's Theory of Epistemic Beliefs. 220-229 - Peter Gorniak, David Poole:

Building a Stochastic Dynamic Model of Application Use. 230-237 - Peter Grünwald:

Maximum Entropy and the Glasses You are Looking Through. 238-246 - Joseph Y. Halpern:

Conditional Plausibility Measures and Bayesian Networks. 247-255 - Michael Harvey, Radford M. Neal:

Inference for Belief Networks Using Coupling From the Past. 256-263 - David Heckerman, David Maxwell Chickering, Christopher Meek, Robert Rounthwaite, Carl Myers Kadie:

Dependency Networks for Collaborative Filtering and Data Visualization. 264-273 - Søren Højsgaard:

YGGDRASIL-A statistical package for learning Split Models. 274-281 - Michael C. Horsch, William S. Havens:

Probabilistic Arc Consistency: A Connection between Constraint Reasoning and Probabilistic Reasoning. 282-290 - Tony Jebara, Tommi S. Jaakkola:

Feature Selection and Dualities in Maximum Entropy Discrimination. 291-300 - Radim Jirousek:

Marginalization in Composed Probabilistic Models. 301-308 - Souhila Kaci, Salem Benferhat, Didier Dubois, Henri Prade:

A principled analysis of merging operations in possibilistic logic. 24-31 - Michael J. Kearns, Yishay Mansour, Satinder Singh:

Fast Planning in Stochastic Games. 309-316 - Uffe Kjærulff, Linda C. van der Gaag:

Making Sensitivity Analysis Computationally Efficient. 317-325 - Daphne Koller, Ronald Parr:

Policy Iteration for Factored MDPs. 326-334 - Pierfrancesco La Mura:

Game Networks. 335-342 - Pedro Larrañaga, Ramon Etxeberria, José Antonio Lozano, José M. Peña:

Combinatonal Optimization by Learning and Simulation of Bayesian Networks. 343-352 - Tsai-Ching Lu, Marek J. Druzdzel, Tze-Yun Leong:

Causal Mechanism-based Model Constructions. 353-362 - Thomas Lukasiewicz:

Credal Networks under Maximum Entropy. 363-370 - Peter McBurney, Simon Parsons:

Risk Agoras: Dialectical Argumentation for Scientific Reasoning. 371-379 - Marina Meila, Tommi S. Jaakkola:

Tractable Bayesian Learning of Tree Belief Networks. 380-388 - Brian Milch, Daphne Koller:

Probabilistic Models for Agent's Beliefs and Decisions. 389-396 - Andrew W. Moore:

The Anchors Hierarchy: Using the Triangle Inequality to Survive High Dimensional Data. 397-405 - Andrew Y. Ng, Michael I. Jordan:

PEGASUS: A policy search method for large MDPs and POMDPs. 406-415 - Thomas D. Nielsen, Finn Verner Jensen:

Representing and Solving Asymmetric Bayesian Decision Problems. 416-425 - Thomas D. Nielsen, Pierre-Henri Wuillemin, Finn Verner Jensen, Uffe Kjærulff:

Using ROBDDs for Inference in Bayesian Networks with Troubleshooting as an Example. 426-435 - Dennis Nilsson, Steffen L. Lauritzen:

Evaluating Influence Diagrams using LIMIDs. 436-445 - Luis E. Ortiz, Leslie Pack Kaelbling:

Adaptive Importance Sampling for Estimation in Structured Domains. 446-454 - Tim Paek, Eric Horvitz:

Conversation as Action Under Uncertainty. 455-464 - Dmitry Pavlov, Heikki Mannila, Padhraic Smyth:

Probabilistic Models for Query Approximation with Large Sparse Binary Data Sets. 465-472 - David M. Pennock, Eric Horvitz, Steve Lawrence, C. Lee Giles:

Collaborative Filtering by Personality Diagnosis: A Hybrid Memory and Model-Based Approach. 473-480 - David M. Pennock, Michael P. Wellman:

Compact Securities Markets for Pareto Optimal Reallocation of Risk. 481-488 - Leonid Peshkin, Kee-Eung Kim, Nicolas Meuleau, Leslie Pack Kaelbling:

Learning to Cooperate via Policy Search. 489-496 - Pascal Poupart, Craig Boutilier:

Value-Directed Belief State Approximation for POMDPs. 497-506 - David V. Pynadath, Michael P. Wellman:

Probabilistic State-Dependent Grammars for Plan Recognition. 507-514 - Silja Renooij, Linda C. van der Gaag, Simon Parsons, Shaw Green:

Pivotal Pruning of Trade-offs in QPNs. 515-522 - Dale Schuurmans, Finnegan Southey:

Monte Carlo inference via greedy importance sampling. 523-532 - Marc Sebban, Richard Nock:

Combining Feature and Example Pruning by Uncertainty Minimization. 533-540 - Satinder Singh, Michael J. Kearns, Yishay Mansour:

Nash Convergence of Gradient Dynamics in General-Sum Games. 541-548 - Claus Skaanning:

A Knowledge Acquisition Tool for Bayesian-Network Troubleshooters. 549-557 - Harald Steck:

On the Use of Skeletons when Learning in Bayesian Networks. 558-565 - Amos J. Storkey:

Dynamic Trees: A Structured Variational Method Giving Efficient Propagation Rules. 566-573 - Loo-Nin Teow, Kia-Fock Loe:

An Uncertainty Framework for Classification. 574-579 - Jin Tian:

A Branch-and-Bound Algorithm for MDL Learning Bayesian Networks. 580-588 - Jin Tian, Judea Pearl:

Probabilities of Causation: Bounds and Identification. 589-598 - Shivakumar Vaithyanathan, Byron Dom:

Model-Based Hierarchical Clustering. 599-608 - Jirina Vejnarová:

Conditional Independence and Markov Properties in Possibility Theory. 609-616 - Haiqin Wang, Marek J. Druzdzel:

User Interface Tools for Navigation in Conditional Probability Tables and Elicitation of Probabilities in Bayesian Networks. 617-625 - Wim Wiegerinck:

Variational Approximations between Mean Field Theory and the Junction Tree Algorithm. 626-633 - David M. Williamson, Russell G. Almond, Robert J. Mislevy:

Model Criticism of Bayesian Networks with Latent Variables. 634-643 - Frank Wittig, Anthony Jameson:

Exploiting Qualitative Knowledge in the Learning of Conditional Probabilities of Bayesian Networks. 644-652

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














