Papers by prarabdh raipurkar

The prime goal of digital imaging techniques is to reproduce the realistic appearance of a scene.... more The prime goal of digital imaging techniques is to reproduce the realistic appearance of a scene. Low Dynamic Range (LDR) cameras are incapable of representing the wide dynamic range of the real-world scene. The captured images turn out to be either too dark (underexposed) or too bright (overexposed). Specifically, saturation in overexposed regions makes the task of reconstructing a High Dynamic Range (HDR) image from single LDR image challenging. In this paper, we propose a deep learning based approach to recover details in the saturated areas while reconstructing the HDR image. We formulate this problem as an image-to-image (I2I) translation task. To this end, we present a novel conditional GAN (cGAN) based framework trained in an end-to-end fashion over the HDR-REAL and HDR-SYNTH datasets. Our framework uses an overexposed mask obtained from a pre-trained segmentation model to facilitate the hallucination task of adding details in the saturated regions. We demonstrate the effecti...
Proceedings of the Twelfth Indian Conference on Computer Vision, Graphics and Image Processing

ArXiv, 2021
The prime goal of digital imaging techniques is to reproduce the realistic appearance of a scene.... more The prime goal of digital imaging techniques is to reproduce the realistic appearance of a scene. Low Dynamic Range (LDR) cameras are incapable of representing the wide dynamic range of the real-world scene. The captured images turn out to be either too dark (underexposed) or too bright (overexposed). Specifically, saturation in overexposed regions makes the task of reconstructing a High Dynamic Range (HDR) image from single LDR image challenging. In this paper, we propose a deep learning based approach to recover details in the saturated areas while reconstructing the HDR image. We formulate this problem as an image-to-image (I2I) translation task. To this end, we present a novel conditional GAN (cGAN) based framework trained in an end-to-end fashion over the HDR-REAL and HDR-SYNTH datasets. Our framework uses an overexposed mask obtained from a pre-trained segmentation model to facilitate the hallucination task of adding details in the saturated regions. We demonstrate the effecti...
Uploads
Papers by prarabdh raipurkar