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Fault-tolerant distributed systems are becoming more important, but in existing

systems maintaining the consistency of replicated data is quite expensive. The

Totem single-ring protocol supports consistent concurrent operations by placing a

total order on broadcast messages. This total order is derived from the sequence

number in a token that circulates around a logical ring imposed on a set of processors

in a broadcast domain. The protocol handles recon�guration of the system when

processors fail and restart or the network partitions and remerges. Extended virtual

synchrony ensures that processors deliver messages and con�guration changes to

the application in a consistent total order system-wide. An e�ective 
ow control

mechanism enables the Totem single-ring protocol to achieve message ordering rates

signi�cantly higher than the best prior total ordering protocols.
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1. INTRODUCTION

Fault-tolerant distributed systems are becoming more important due to the increas-

ing demand for more reliable operation and improved performance. Maintaining

the consistency of replicated data and coordinating the activities of cooperating

processors present substantial problems, which are made more di�cult by concur-

rency, asynchrony, fault-tolerance, and real-time performance requirements. Ex-

isting fault-tolerant distributed systems that address these problems are di�cult

to program, and expensive in the number of messages broadcast and/or computa-

tions required. Recent protocols for fault-tolerant distributed systems [Amir et al.

1992b; Birman and van Renesse 1994; Kaashoek and Tanenbaum 1991; Melliar-

Smith et al. 1990; Peterson et al. 1989] employ the idea of placing a partial or total

order on broadcast messages to simplify the application programs and to reduce

the communication and computation costs.

The Totem single-ring protocol supports high-performance fault-tolerant dis-

tributed systems that must continue to operate despite network partitioning and

remerging and despite processor failure and restart. Totem provides totally or-

dered message delivery with low overhead, high throughput, and low latency using

a logical token-passing ring imposed on a broadcast domain. The key to its high

performance is an e�ective 
ow control mechanism. Totem also provides rapid

detection of network partitioning and processor failure together with recon�gura-

tion and membership services. Its novel mechanisms prevent delivery of messages

in di�erent orders in di�erent components of a partitioned network, and provide

accurate information about which processors have delivered which messages. Ear-

lier versions of the Totem single-ring protocol are described in [Amir et al. 1993;

Melliar-Smith et al. 1991].

Programming the application is considerably simpli�ed if messages are delivered

in total order rather than only in causal order, or if messages are delivered in causal

order rather than only in FIFO order. In prior systems, delivery of messages in

total order has been more expensive than delivery of messages in causal order, and

delivery of messages in causal order has been more expensive than FIFO delivery.

The Totem single-ring protocol can, however, deliver totally ordered messages with

high throughput at no greater cost than causally ordered messages or, indeed,

than reliable point-to-point FIFO messages. A total order on messages simpli�es

the application programming by reducing the risk of inconsistency when replicated

data are updated, and by resolving the contention for shared resources within the

system, such as the claiming of locks.

In Totem, messages are delivered in agreed order, which guarantees that proces-

sors deliver messages in a consistent total order and that, when a processor delivers

a message, it has already delivered all prior messages originated within its current

con�guration. Totem also provides delivery of messages in safe order, which guar-

antees additionally that, when a processor delivers a message, it has determined

that every processor in the current con�guration has received and will deliver the

message unless that processor fails. Delivery of a message in agreed or safe order

is requested by the originator of the message.

Delivery of messages in a consistent total order is not easy to achieve in dis-

tributed systems that are subject to processor failure and network partitioning. A
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Fig. 1. The Totem single-ring protocol hierarchy.

failing processor, or a group of processors that have become isolated, may deliver

messages in an order that is di�erent from the order determined by other processors.

As long as those processors remain failed or isolated, these inconsistencies are not

apparent, but as soon as a processor is repaired and readmitted to the system, or as

soon as the components of a partitioned system are remerged, the inconsistencies in

the message order may become manifest and recovery may be di�cult. The Totem

protocol cannot guarantee that every processor is able to deliver every message but

it does guarantee that, if two processors deliver a message, they deliver the message

in the same total order.

The application programs may also need to know about con�guration changes.

Di�erent processors may learn of a con�guration change at di�erent times, but

they must form consistent views of the con�guration change and of the messages

that precede or follow the con�guration change. Birman [Birman and van Renesse

1994] devised the concept of virtual synchrony, which ensures that processors deliver

messages consistently in the event of processor fail-stop faults. We have generalized

this concept to extended virtual synchrony [Moser et al. 1994], which applies to

systems in which the network can partition and remerge, and in which processors

can fail and restart with stable storage intact.

The Totem single-ring protocol is designed to operate over a single broadcast

domain, such as an Ethernet. It uses Unix UDP, which provides a best-e�ort

multicast service over such media. Other media that provide a best-e�ort multicast

service, such as ATM or the Internet MBone, can be used to construct the broadcast

domain needed by Totem.

The software architecture of the Totem single-ring protocol is shown in Figure 1.

The arrows on the left represent the passage of messages through the protocol hi-

erarchy, while the arrows on the right represent Con�guration Change messages

and con�guration installation. Using a logical token-passing ring imposed on the

physical broadcast domain, the single-ring protocol provides reliable totally ordered

messsage delivery and e�ective 
ow control. On detection of token loss, or on receiv-
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ing a message from a processor not on its ring, a processor invokes the membership

protocol to form a new ring using Join messages and a Commit token transmit-

ted over the broadcast domain. The membership protocol activates the recovery

protocol with the proposed con�guration change. The recovery protocol uses the

single-ring ordering protocol to recover missing messages. The processor then in-

stalls the new ring, by delivering Con�guration Change messages to the application.

2. RELATED WORK

Our work on the Totem protocol is based on our combined experience with two

systems: the Trans and Total reliable ordered broadcast and membership protocols

[Melliar-Smith et al. 1990; Moser et al. 1994] and the Transis group communication

system [Amir et al. 1992a; Amir et al. 1992b].

The Trans protocol uses positive and negative acknowledgments piggybacked

onto broadcast messages and exploits the transitivity of positive acknowledgments

to reduce the number of acknowledgments required. The Total protocol, layered on

top of the Trans protocol, is a fault-tolerant total ordering protocol that continues

to order messages provided that a resiliency constraint is met. The membership

protocol, layered on top of the Total protocol, ensures that each change in the

membership occurs at the same logical time in each processor, corresponding to

a position in the total order. The Totem protocol was developed to address the

computational overhead of Trans and Total, and is intended for local-area networks

with fast and highly reliable communication.

The Transis group communication system provides reliable ordered group mul-

ticast and membership services. Transis initially based its ordering protocol on

the Trans protocol but, more recently, has also included the Totem protocol for

message ordering. Unlike other prior protocols, the Transis membership protocol

supports remerging of a partitioned network, and maintains a consensus view of the

membership of each component, rather than a global consensus view of the entire

system. The Totem membership protocol uses the idea, �rst proposed for Transis,

that the membership can be reduced in size to ensure termination.

In [Chang and Maxemchuk 1984] Chang and Maxemchuk described a reliable

broadcast and ordering protocol that uses a token-based sequencer strategy. Unlike

Totem, which requires that a processor must hold the token to broadcast a message,

their protocol allows processors to broadcast messages at any time. The processor

holding the token is responsible for broadcasting an acknowledgment message that

includes a sequence number for each message acknowledged. A processor that has

not received a message sends a negative acknowledgment to request retransmission

by the processor that acknowledged the message. While the latency is good at low

loads, it increases at high loads and in the presence of a failed processor.

More closely related to Totem is the TPM protocol of Rajagopalan and McKin-

ley [Rajagopalan and McKinley 1989], which also uses a token to control broadcast-

ing and sequencing of messages. The TPM protocol provides the safe delivery but

not the agreed delivery that Totem provides. In the absence of processor failure and

network partitioning, TPM requires on average two and one-half token rotations for

safe delivery, whereas Totem requires two token rotations. In the event of network

partitioning, only the component containing a majority of the processors continues

to operate; processors in the other components block. In contrast, Totem handles
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network partitioning and remerging by allowing each component of a partitioned

system to continue operating, not just the component that contains a majority of

the processors.

Birman's Isis system [Birman and van Renesse 1994] and more recently the Horus

system [van Renesse et al. 1994] have focused on process groups and the applica-

tion program interface. Isis provides BCAST or unordered messages, CBCAST

or causally ordered messages, and ABCAST or totally ordered messages. A vec-

tor clock strategy is used to ensure causal ordering, and a token-based sequencer,

similar to that of Chang and Maxemchuk, is used to provide total ordering. Isis

introduced the important idea of virtual synchrony in which con�guration change

messages are ordered relative to other messages so that a consistent view of the

system is maintained as the system changes dynamically. The user interfaces of

both Transis and Totem were inspired by the Isis user interface.

The Psync protocol of Peterson, Buchholz and Schlichting [Peterson et al. 1989]

constructs a partial order on messages that can be converted into a total order.

Isis, Trans, and Transis employ a similar strategy. In contrast, Totem constructs a

total order on messages directly without constructing a partial order �rst. Mishra,

Peterson and Schlichting [Mishra et al. 1991] have developed a membership protocol

based on the partial order of Psync.

In [Kaashoek and Tanenbaum 1991] Kaashoek and Tanenbaum describe group

communication in the Amoeba distributed operating system. One processor, called

the sequencer, is responsible for placing a total order on messages. Processors

send point-to-point messages to the sequencer, which assigns sequence numbers to

messages and broadcasts them to the other processors. Messages are recovered by

sending a request to the sequencer for retransmission. Group membership functions

are also provided. Performance is excellent for very short messages, but deterio-

rates for long messages and also if high resilience to processor failure and network

partitioning is required.

The excellent performance of the Totem single-ring protocol is achieved using a


ow control strategy that limits message loss due to bu�er over
ow at the receivers.

Related to this 
ow control strategy are the sliding-window strategy, the FDDI

token rotation time limit, and the 
ow control mechanism of Transis. The use of a

token in combination with a window for 
ow control on a broadcast medium works

much better than either mechanism in isolation and, as far as we know, has not

been investigated in prior work.

3. THE MODEL

We consider a distributed system built on a broadcast domain consisting of a �nite

number of processors that communicate by broadcasting messages. We use the term

originate to refer to the �rst broadcast of a message generated by the application.

Each broadcast of a message is received immediately or not at all by a processor in

the broadcast domain and, thus, messages may have to be retransmited to achieve

reliable delivery. A processor receives all of its own broadcast messages.

The broadcast domain may become partitioned so that processors in one com-

ponent of the partitioned system are unable to communicate with processors in

another component. Communication between separated components can subse-

quently be reestablished.
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Each processor within the system has a unique identi�er and stable storage.

Processors can incur fail stop, timing, or omission faults. A processor that is

excessively slow, or that fails to receive a message an excessive number of times, can

be regarded as having failed. Failed processors can be repaired, and are recon�gured

into the system when they restart. If a processor fails and restarts, its identi�er

does not change and all or part of its state may have been retained in stable

storage.

There are no malicious faults, such as faults in which processors generate incorrect

messages or in which the communication medium undetectably modi�es messages

in transit.

Imposed on the broadcast domain is a logical token-passing ring. The token

is a special message transmitted point-to-point. The token may be lost by not

being received by a processor on the ring. Each ring has a representative, chosen

deterministically from the membership when the ring is formed, and an identi�er

that consists of a ring sequence number and the identi�er of the representative.

To ensure that ring sequence numbers and hence ring identi�ers are unique, each

processor records its ring sequence number in stable storage.

We use the term ring to refer to the infrastructure of Totem, and the term

con�guration to represent the view provided to the application. The membership

of a con�guration is a set of processor identi�ers. The minimum con�guration for

a processor consists of the processor itself. A regular con�guration has the same

membership and identi�er as its corresponding ring. A transitional con�guration

consists of processors that are members of a new ring coming directly from the

same old ring; it has an identi�er that consists of a \ring" sequence number and

the identi�er of the representative.

We distinguish between the terms \receive" and \deliver," as follows. A processor

receives messages that were broadcast by processors in the broadcast domain, and

a processor delivers messages in total order to the application.

Two types of messages are delivered to the application. Regular messages are

generated by the application for delivery to the application. Con�guration Change

messages are generated by the processors for delivery to the application, without

being broadcast, to terminate one con�guration and to initiate another. The iden-

ti�ers of the regular and Con�guration Change messages consist of con�guration

identi�ers and message sequence numbers.

We de�ne a causal order that is a modi�cation of Lamport's causal order [Lam-

port 1978] in that it applies to messages rather than events and is constrained to

messages originated within a single con�guration. This allows remerging of a par-

titioned network and joining of a failed processor without requiring all messages in

the history to be delivered. Causal and total orders

1

are de�ned on sets of messages,

as follows:

1

A total order on a set S is a relation� that satis�es the re
exive (x � x), transitive (if x � y and

y � z, then x � z), anti-symmetric (if x � y and x 6= y, then y 6� x), and comparable properties

(x � y or y � x). A partial order on a set S is a relation� de�ned on S that satis�es the re
exive,

transitive, and anti-symmetric properties. To adhere to standard mathematical practice in which

partial and total orders are re
exive, \before" must be regarded as non-strict, i.e. an event occurs

before itself.
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Causal Order for Con�guration C. The re
exive transitive closure of the

\precedes" relation, which is de�ned for all processors p in C as follows:

|Message m

1

precedes message m

2

if processor p originated m

1

in con�guration

C before p originated m

2

in C.

|Message m

1

precedes message m

2

if processor p originated m

2

in con�guration

C and p delivered m

1

in C before originating m

2

.

The causal order is assumed to be anti-symmetric and, thus, is a partial order.

2

Delivery Order for Con�guration C. The re
exive transitive closure of the

\precedes" relation, which is de�ned on the union over all processors p in C of the

sets of regular messages delivered in C by p as follows:

|Message m

1

precedes message m

2

if processor p delivers m

1

in C before p delivers

m

2

in C.

Note that some processors in con�guration C may not deliver all messages of the

Delivery Order for Con�guration C.

Global Delivery Order. The re
exive transitive closure of the union of the Con-

�guration Delivery Orders for all con�gurations and of the \precedes" relation,

which is de�ned on the set of Con�guration Change messages and regular messages

as follows:

|For each processor p and each con�guration C of which p is a member, the

Con�guration Change message delivered by p that initiates C precedes every

message m delivered by p in C.

|For each processor p and each con�guration C of which p is a member, every mes-

sage m delivered by p in C precedes the Con�guration Change message delivered

by p that terminates C.

In [Amir et al. 1994] we prove that the Delivery Order for Con�guration C is a

total order and that the Global Delivery Order is a total order.

4. SERVICES

The objective of the Totem single-ring protocol is to provide the application with

reliable totally ordered message delivery and membership services, as de�ned below.

4.1 Membership Services

The Totem membership protocol provides the following properties:

Uniqueness of Con�gurations. Each con�guration identi�er is unique; more-

over, at any time a processor is a member of at most one con�guration.

Consensus. All of the processors that install a con�guration determine that the

members of the con�guration have reached consensus on the membership.

3

Termination. If a con�guration ceases to exist for any reason, such as processor

failure or network partitioning, then every processor of that con�guration either

2

This property cannot be proved. That the physical world is anti-symmetric must be an

assumption.

3

This does not violate the impossibility result of Fischer, Lynch and Paterson [Fischer et al. 1985]

because the membership protocol allows the membership to decrease in order to reach consensus.
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installs a new con�guration by delivering a Con�guration Change message or fails

before doing so. The Con�guration Change message contains the identi�er of the

con�guration it terminates, the identi�er of the con�guration it initiates, and the

membership of the con�guration it initiates.

Con�guration Change Consistency. If processors p and q install con�guration

C

2

directly after C

1

, then p and q both deliver the same Con�guration Change

message to terminate C

1

and initiate C

2

.

4.2 Reliable Ordered Delivery Services

The Totem total ordering protocol provides the following properties, which hold for

all con�gurations C and for all processors p in C:

Reliable Delivery for Con�guration C

|Each message m has a unique identi�er.

|If processor p delivers message m, then p delivers m once only. Moreover, if

processor p delivers two di�erent messages, then p delivers one of those messages

strictly before it delivers the other.

|If processor p originates message m, then p will deliver m or will fail before

delivering a Con�guration Change message to install a new regular con�guration.

|If processor p is a member of regular con�guration C and no con�guration change

ever occurs, then p will deliver in C all messages originated in C.

|If processor p delivers message m originated in con�guration C, then p is a mem-

ber of C and p has installed C. Moreover, p delivers m in C or in a transitional

con�guration between C and the next regular con�guration it installs.

|If processors p and q are both members of consecutive con�gurations C

1

and

C

2

, then p and q deliver the same set of messages in C

1

before delivering the

Con�guration Change message that terminates C

1

and initiates C

2

.

Reliable delivery de�nes the basic requirements on message delivery, in particular,

which messages a processor must deliver within a con�guration.

Delivery in Causal Order for Con�guration C

|Reliable delivery for con�guration C.

|If processor p delivers messages m

1

and m

2

and m

1

precedes m

2

in the causal

order for con�guration C, then p delivers m

1

before p delivers m

2

.

Causal delivery imposes an ordering constraint to ensure that the delivery order

respects Lamport causality within a con�guration.

Delivery in Agreed Order for Con�guration C

|Delivery in causal order for con�guration C.

|If processor p delivers message m

2

in con�guration C and m

1

is any message that

precedes m

2

in the Delivery Order for Con�guration C, then p delivers m

1

in C

before p delivers m

2

.

Agreed delivery requires that all processors deliver messages within a con�guration

in the same total order. Moreover, when a processor delivers a message, it must

have delivered all preceding messages in the total order for the con�guration.
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Delivery in Safe Order for Con�guration C

|Delivery in agreed order for con�guration C.

|If processor p delivers message m in regular con�guration C in safe order, then

every member of C has installed C.

|If processor p delivers message m in con�guration C and the originator of m re-

quested safe delivery, then p has determined that each processor in C has received

m and will deliver m or will fail before installing a new regular con�guration.

Delivery of a message in safe order requires that a processor has determined that

all of the processors in the con�guration have received the message. This determi-

nation is typically based on acknowledgments from the processors indicating that

they have received the message and all of its predecessors in the total order. Once

a processor has acknowledged receipt of a safe message, it is required to deliver

the message unless it fails. Note that this requirement does not guarantee that a

processor delivers the message in the same con�guration as all of the other proces-

sors. Totem uses a Con�guration Change message to notify the application of the

membership of the con�guration within which delivery is guaranteed as safe.

Extended Virtual Synchrony

|Delivery in agreed or safe order as requested by the originator of the message.

|If processor p delivers messages m

1

and m

2

and m

1

precedes m

2

in the Global

Delivery Order, then p delivers m

1

before p delivers m

2

.

Virtual synchrony was devised by Birman [Birman and van Renesse 1994] to ensure

that view (con�guration) changes occur at the same point in the message delivery

history for all operational processors. Processors that are members of two successive

views must deliver exactly the same set of messages in the �rst view. A failed

processor that recovers can only be readmitted to the system as a new processor.

Thus, failed processors are not constrained as to the messages they deliver or their

order, and messages delivered by a failed processor have no e�ect on the system. If

the system partitions, only processors in one component, the primary component,

continue to operate; all of the other processors are deemed to have failed.

Extended virtual synchrony extends the concept of virtual synchrony to systems

in which all components of a partitioned system continue to operate and can subse-

quently remerge, and to systems in which failed processors can be repaired and can

rejoin the system with stable storage intact. Two processors may deliver di�erent

sets of messages, when one of them has failed or when they are members of di�er-

ent components, but they must not deliver messages inconsistently. In particular,

if processor p delivers message m

1

before p delivers message m

2

, then processor q

must not deliver message m

2

before q delivers message m

1

.

4

Extended virtual synchrony requires that the properties of delivery in agreed

and safe order must be satis�ed. If processor p delivers message m as safe in

con�guration C, then every processor in C has received m and will deliver m before

it installs a new regular con�guration, unless that processor fails. This is achieved

by installing a transitional con�guration with a reduced membership, within which

4

Note, however, that a de�nition based on pairwise delivery of messages does not su�ce. We must

ensure that the Global Delivery Order has no cycles of any length.
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any remaining messages from the prior con�guration are delivered, while honoring

the agreed and safe delivery guarantees. Thus, Totem delivers two Con�guration

Change messages, the �rst to introduce a smaller transitional con�guration and

the second to introduce the new regular con�guration. In [Moser et al. 1994] we

demonstrate that virtual synchrony can be implemented on top of the more general

extended virtual synchrony property provided by Totem.

Proofs of correctness for the Totem single-ring protocol based on the service

properties de�ned above can be found in [Amir et al. 1994].

5. THE TOTAL ORDERING PROTOCOL

The Totem single-ring ordering protocol provides agreed and safe delivery of mes-

sages within a broadcast domain. Imposed on the broadcast domain is a logical

token-passing ring. The token controls access to the ring; only the processor in

possession of the token can broadcast a message. A processor can broadcast more

than one message for each visit of the token, subject to the constraints imposed

by the 
ow control mechanisms described in Section 8. When no processor has a

message to broadcast, the token continues to circulate. Each processor has a set of

input bu�ers in which it stores incoming messages. The 
ow control mechanisms

avoid over
ow of these input bu�ers.

Each message header contains a sequence number derived from a �eld of the

token; thus, there is a single sequence of message sequence numbers for all processors

on the ring. Delivery of messages in sequence number order is agreed delivery. Safe

delivery uses an additional �eld of the token, the aru �eld, to determine when all

processors on the ring have received a message.

We now describe the Totem single-ring ordering protocol with the assumptions

that the token is never lost, that processor failures do not occur, and that the

network does not become partitioned; however, messages may be lost. In Section 6

we relax these assumptions and extend the protocol to handle token loss, processor

failure and restart, and network partitioning and remerging.

5.1 The Data Structures

Regular Message

Each regular message contains the following �elds:

� sender id: The identi�er of the processor originating the message.

� ring id: The identi�er of the ring on which the message was originated, consisting of a

ring sequence number and the representative's identi�er.

� seq: A message sequence number.

� conf id: 0.

� contents: The contents of the message.

The ring id, seq, and conf id �elds comprise the identi�er of the message.

Regular Token

To broadcast a message on the ring, a processor must hold the regular token, also

referred to as the token. The token contains the following �elds:

� type: Regular.

� ring id: The identi�er of the ring on which the token is circulating, consisting of a ring

sequence number and the representative's identi�er.
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� token seq: A sequence number which allows recognition of redundant copies of the

token.

� seq: The largest sequence number of any message that has been broadcast on the ring,

i.e. a high-water mark.

� aru: A sequence number (all-received-up-to) used to determine if all processors on the

ring have received all messages with sequence numbers less than or equal to this sequence

number, i.e. a low-water mark.

� aru id: The identi�er of the processor that set the aru to a value less than the seq.

� rtr: A retransmission request list, containing one or more retransmission requests.

The seq �eld of the token provides a single total order of messages for all processors

on the ring. The aru �eld is the basic acknowledgment mechanism that determines

if a message can be delivered as safe.

Local Variables

Each processor maintains several local variables, including

� my token seq: The value of the token seq when the processor forwarded the token last.

� my aru: The sequence number of a message such that the processor has received all

messages with sequence numbers less than or equal to this sequence number.

� my aru count: The number of times that the processor has received the token with an

unchanged aru and with the aru not equal to seq.

� new message queue: The queue of messages originated by the application waiting to be

broadcast.

� received message queue: The queue of messages received from the communication medium

waiting to be delivered to the application.

A processor updates my token seq and my aru count as it receives tokens, and

updates my aru as it receives messages. When it transmits a message, the processor

transfers the message from new message queue to received message queue. When

it determines that a message has become safe, the processor no longer needs to

retain the message for future retransmission and, thus, can discard the message

from received message queue.

5.2 The Protocol

On receipt of the token, a processor completely empties its input bu�er, either

delivering the messages or retaining them until they can be delivered in order. It

then broadcasts requested retransmissions and new messages, updates the token,

and transmits the token to the next processor on the ring. For each new message

that it broadcasts, the processor increments the seq �eld of the token and sets the

sequence number of the message to this value.

Each time a processor receives the token, it compares the aru �eld of the token

with my aru. If my aru is smaller, the processor replaces the aru with my aru and

sets the aru id �eld of the token to its identi�er. If the aru id equals the processor's

identi�er, it sets the aru to my aru. (In this case, the processor had set the aru on

the last visit of the token and no other processor changed the aru during the token

rotation.) Whenever the seq and the aru are equal, the processor increments aru

and my aru in step with seq, and sets the aru id to a null value (a value that is not

the id of any processor).
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If the seq �eld of the token is greater than its my aru, the processor has not

received all of the messages that have been broadcast on the ring, so it augments

the rtr �eld of the token with the missed messages. If the processor has received

messages that appear in the rtr �eld, it retransmits those messages before broad-

casting new messages. When it retransmits a message, the processor removes the

sequence number of the message from the rtr �eld.

If a processor has received a message m and has delivered every message with

sequence number less than that of m and if the originator of m requested agreed

delivery, then the processor delivers m in agreed order. If, in addition, the processor

forwards the token with the aru �eld greater than or equal to the sequence number

of m on two successive rotations and if the originator of m requested safe delivery,

then m is safe and the processor delivers m in safe order.

The total ordering protocol is, of course, unable to continue when the token

is lost; a token retransmission mechanism has been implemented to reduce the

probability of token loss. Each time a processor forwards the token, it sets a Token

Retransmission timeout. If a processor receives a regular message or the token, it

cancels the Token Retransmission timeout. On a Token Retransmission timeout,

the processor retransmits the token to the next processor on the ring and then

resets the timeout.

The token seq �eld of the token provides recognition of redundant tokens. A

processor accepts the token only if the token seq �eld is greater than my token seq;

otherwise, the token is discarded as redundant. If the token is accepted, the pro-

cessor increments token seq and sets my token seq to the new value of token seq.

Token retransmission increases the probability that the token will be received at the

next processor on the ring and incurs minimal overhead. The membership protocol

described in the next section handles the loss of all copies of the token.

6. THE MEMBERSHIP PROTOCOL

The Totem single-ring ordering protocol is optimized for high performance under

failure-free conditions, but depends on a membership protocol to resolve processor

failure, network partitioning, and loss of all copies of the token. The member-

ship protocol detects such failures and reconstructs a new ring on which the total

ordering protocol can resume operation.

The objective of the membership protocol is to ensure consensus, in that ev-

ery member of the con�guration agrees on the membership of the con�guration,

and termination, in that every processor installs some con�guration with an agreed

membership within a bounded time unless it fails within that time. The member-

ship protocol also generates a new token and recovers messages that had not been

received by some of the processors when the failure occurred.

6.1 The Data Structures

Join Message

A Join message contains a set of identi�ers of processors being considered for mem-

bership in the new ring by the processor broadcasting the Join message and also a

set of identi�ers of processors that it regards as having failed. These are contained

in the proc set and fail set �elds of the Join message de�ned below:
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� type: Join.

� sender id: The processor identi�er of the sender.

� proc set: The set of identi�ers of processors that the sender is considering for member-

ship in a new ring.

� fail set: The set of identi�ers of processors that the sender has determined to have

failed.

� ring seq: The largest ring sequence number of a ring id known to the sender.

Join messages di�er from regular messages in that a processor may broadcast a Join

message without holding the token; moreover, Join messages are not retransmitted

or delivered to the application.

When a processor broadcasts a Join message, it is trying to achieve consensus

on the proc set and fail set in the Join message. The fail set is a subset of the

proc set. The proc set and fail set can only increase until a new ring is installed.

The ring seq �eld allows the receiver of a Join message to determine if the sender

has abandoned a past round of consensus and is now attempting to form a new

membership. It is also used to create unique ring identi�ers.

Con�guration Change Message

The membership protocol also uses another special type of message, the Con�gu-

ration Change message, which contains the following �elds:

� ring id: The identi�er of the regular con�guration if this message initiates a regular

con�guration, or the identi�er of the preceding regular con�guration if this message

initiates a transitional con�guration.

� seq: 0 if this message initiates a regular con�guration, or the largest sequence number

of a message delivered in the preceding regular con�guration if this message initiates a

transitional con�guration.

� conf id: The identi�er of the old transitional con�guration from which the processor

is transitioning if this message initiates a regular con�guration, or the identi�er of the

transitional con�guration to which the processor is transitioning if this message initiates

a transitional con�guration.

� memb: The membership of the con�guration that this message initiates.

The ring id, seq, and conf id �elds comprise the identi�er of the message.

A Con�guration Change message may describe a change from an old con�gura-

tion to a transitional con�guration or from a transitional con�guration to a new

con�guration. Con�guration Change messages di�er from regular messages in that

they are generated locally at each processor and are delivered directly to the appli-

cation without being broadcast.

Commit Token

Each new ring is initiated by one of its members, the representative, a processor

chosen deterministically from the members of the ring. The representative generates

a Commit token that di�ers from the regular token in that its type �eld is set to

Commit and it contains the following �elds in place of the rtr �eld:

� memb list: A list containing a processor identi�er, old ring ring id, old ring my aru,

high delivered, and received 
g �elds for each member of the new ring.

� memb index: The index of the processor in memb list that last forwarded the Commit

token.
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For each processor identi�er in memb list, the high delivered �eld is the largest

sequence number of a message that the processor has delivered on the old ring.

The received 
g �eld indicates that the processor has already received all of the

messages possessed by other processors in its transitional con�guration.

On the �rst rotation of the Commit token around the new ring, each processor

sets its old ring id, old ring my aru, high delivered, and received 
g �elds. It also

updates memb index. The remaining �elds are set by the representative when it

creates the Commit token.

Local Variables

Each processor maintains several local variables, including

� my ring id: The ring identi�er in the most recently accepted Commit token.

� my memb: The set of identi�ers of processors on the processor's current ring.

� my new memb: The set of identi�ers of processors on the processor's new ring.

� my proc set: The set of identi�ers of processors that the processor is considering for

membership of a new ring.

� my fail set: The set of identi�ers of processors that the processor has determined to

have failed.

� consensus: A boolean array indexed by processors and indicating whether each processor

is committed to the processor's my proc set and my fail set.

Stable storage is required to store a processor's ring sequence number,my ring id.seq.

This stable storage is read only when a processor recovers from a failure, and is

written when a con�guration change occurs.

6.2 The Protocol

The membership protocol can be described by a �nite state machine with seven

events and four states, as illustrated in Figure 2.

6.2.1 The Seven Events of the Membership Protocol

Receiving a Foreign Message. Such a message was broadcast by a processor

that is not a member of the receiving processor's ring, and activates the membership

protocol in the receiving processor.

Receiving a Join Message. This informs the receiver of the sender's proposed

membership and may cause the receiver to enlarge its my proc set or my fail set.

Receiving a Commit Token. On the �rst reception of the Commit token, a

member of the proposed new ring updates the Commit token. On the second

reception, it obtains the updated information that the other members have supplied.

Token Loss Timeout. This timeout indicates that a processor did not receive

the token or a regular message within the required amount of time and activates

the membership protocol.

Token RetransmissionTimeout. This timeout indicates that a processor should

retransmit the token because it has not received the token or a regular message

broadcast by another processor on the ring.
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Fig. 2. The �nite state machine for the membership protocol.

Join Timeout. This timeout is used to determine the interval after which a Join

message is rebroadcast in the Gather or Commit states.

Consensus Timeout. This timeout indicates that a processor participating in

the formation of a new ring failed to reach consensus in the required amount of

time.

Recognizing Failure to Receive. If the aru �eld has not advanced in several

rotations of the token, a processor determines that the processor that set the aru

has repeatedly failed to receive a message.

6.2.2 The Four States of the Membership Protocol

Operational State. In the Operational state (Figure 3), messages are broadcast

and delivered in agreed or safe order, as requested by the originator of the message.

Since processor failure and network partitioning result in loss of the token, the

mechanism for detecting failures is the Token Loss timeout. When the Token Loss

timeout expires or when a processor receives a Join message or a foreign message,

the processor invokes the protocol for the formation of a new ring and shifts to the

Gather state (Figure 7).

A processor bu�ers a message for retransmission until the message has been

acknowledged by the other processors on the ring. If a processor repeatedly fails

to receive a particular message, then the other processors bu�er that message and

all subsequent messages until that message is received. Consequently, a processor

cannot be allowed to fail to receive messages inde�nitely. When its local variable

my aru count reaches a predetermined constant, a processor determines that some

other processor has failed to receive, namely the processor whose identi�er is in

the aru id �eld of the token. It then includes that processor's identi�er in its

my fail set, shifts to the Gather state, and broadcasts a Join message.



16 � Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, P. Ciarfella

Regular token received:

if token.ring id 6= my ring id or token.token seq <= my token seq then

discard token

else

determine how many messages I'm allowed to broadcast by 
ow control

update retransmission requests

broadcast requested retransmissions

subtract retransmissions from allowed to broadcast

for as many messages as allowed to broadcast do

get message from new message queue

increment token.seq

set message header �elds and broadcast message

update my aru

if my aru < token.aru or my id = token.aru id or token.aru id = invalid then

token.aru := my aru

if token.aru = token.seq then

token.aru id := invalid

else token.aru id := my id

if token.aru = aru in token on last rotation and token.aru id 6= invalid then

increment my aru count

else my aru count := 0

if my aru count > fail to rcv const and token.aru id = my id then

add token.aru id to my fail set

call Shift to Gather

else

update token.rtr and token 
ow control �elds

increment token.token seq

forward token

reset Token Loss and Token Retransmission timeouts

deliver messages that satisfy their delivery criteria

Regular message received:

cancel Token Retransmission timeout if set

add message to receive message queue

update retransmission request list

update my aru

deliver messages that satisfy their delivery criteria

Token Loss timeout expired:

call Shift to Gather

Token Retransmission timeout expired:

retransmit token

reset Token Retransmission timeout

Foreign message from processor q received:

add message.sender id to my proc set

call Shift to Gather

Join message from processor q received:

same as in Gather state except call Shift to Gather regardless of Join message's content

Commit token received:

discard the Commit token

Fig. 3. The pseudocode executed by a processor in the Operational state.
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Gather State. In the Gather state (Figure 4), a processor collects information

about operational processors and failed processors, and broadcasts that information

in Join messages. When a processor receives a Join message, the processor updates

its my proc set and my fail set. If its my proc set and my fail set have changed,

the processor abandons its previous membership, broadcasts a Join message con-

taining the updated sets, and resets the Join and Consensus timeouts. The Join

timeout is shorter than the Consensus timeout and is used to increase the probabil-

ity that Join messages from all currently operational processors are received during

a single round of consensus.

A processor reaches consensus when it has received Join messages with proc set

and fail set equal to its my proc set and my fail set, respectively, from every pro-

cessor in the di�erence of those sets, i.e. my proc set � my fail set. It then no

longer accepts incoming Join messages. A processor is also considered to have

reached consensus when it has received a Commit token with the same member-

ship as my proc set � my fail set. The processors in that di�erence constitute the

membership of the proposed new ring. If the Consensus timeout expires before

a processor has reached consensus, it adds to my fail set all of the processors in

my proc set from which it has not received a Join message with proc set and fail set

equal to its own sets, returns to the Gather state, and tries to reach consensus again

by broadcasting Join messages.

When a processor has reached consensus, it determines whether it has the lowest

processor identi�er in the membership and, thus, is the representative of the pro-

posed new ring. If it is the representative, the processor generates a Commit token.

It determines the ring id of the new ring, which is composed of a ring sequence

number equal to four plus the maximum of the ring sequence numbers in any of

the Join messages used to reach consensus and its own ring sequence number. (The

sequence number two less than that of the new ring is used as the transitional

con�guration identi�er.) The representative also determines the memb list of the

Commit token, which speci�es the membership of the new ring and the order in

which the token will circulate, with the representative placed �rst. It then transmits

the Commit token and shifts to the Commit state (Figure 7).

When a processor other than the representative has reached consensus, if it has

not received the Commit token, the processor sets the Token Loss timeout, cancels

the Consensus timeout, and continues in the Gather state waiting for the Commit

token. If the Token Loss timeout expires, the processor returns to the Gather state

and tries to reach consensus again. On receiving the Commit token, the processor

compares the proposed membership, given by the memb list �eld of the Commit

token, with my proc set � my fail set. If they di�er, the processor discards the

Commit token, returns to the Gather state, and repeats the attempt to form a new

ring. If they agree, the processor extracts the ring id for the new ring from the

Commit token, sets the �elds in its entry of memb list, increments the memb index

�eld, and shifts to the Commit state.

Commit State. In the Commit state (Figure 5), the �rst rotation of the Com-

mit token around the proposed new ring con�rms that all of the members whose

identi�ers appear in the memb list of the Commit token are committed to the mem-

bership. It also collects information needed to determine correct handling of the
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Regular token or regular message received:

same as in Operational state

Foreign message from processor q received:

if q not in my proc set then

add message.sender id to my proc set

call Shift to Gather

Join message from processor q received:

if my proc set = message.proc set and my fail set = message.fail set then

consensus[q] := true

if for all r in my proc set � my fail set

consensus[r] = true and my id = smallest id of my proc set � my fail set then

token.ring id.seq := (maximum of my ring id.seq and Join ring seqs) + 4

token memb := my proc set � my fail set

call Shift to Commit

else return

else if message.proc set subset of my proc set and

message.fail set subset of my fail set then return

else if q in my fail set then return

else

merge message.proc set into my proc set

if my id in message.fail set then

add message.sender id to my fail set

else

merge message.fail set into my fail set

call Shift to Gather

Commit token received:

if my proc set � my fail set = token.memb and token.seq > my ring id then

call Shift to Commit

Join timeout expired:

broadcast Join message with my proc set, my fail set, seq = my ring id.seq

set Join timeout

Consensus timeout expired:

if consensus not reached then

for all r such that consensus[r] 6= true do

add r to my fail set

call Shift to Gather

else

for all r do

consensus[r] := false

consensus[my id] := true

set Token Loss timeout

Token Loss timeout expired:

execute code for Consensus timeout expired in Gather state

call Shift to Gather

Fig. 4. The pseudocode executed by a processor in the Gather state.
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Regular token received: discard token

Regular message received: same as in Operational state

Foreign message received: discard message

Join message from processor q received:

if q in my new memb and message.ring seq � my ring id.seq then

execute code for receipt of Join message in Gather state

call Shift to Gather

Commit token received:

if token.seq = my ring id.seq then

call Shift to Recovery

Join timeout expired: same as in Gather state

Token Loss timeout expired: call Shift to Gather

Fig. 5. The pseudocode executed by a processor in the Commit state.

messages from the old ring that still require retransmission when the membership

protocol was invoked.

The second rotation of the Commit token disseminates the information collected

in the �rst rotation. On receiving the Commit token for the second time, a pro-

cessor shifts to the Recovery state (Figure 7) and writes the sequence number,

my ring id.seq, for its new ring into stable storage.

Recovery State. In the Recovery state (Figure 6), when the representative re-

ceives the Commit token after its second rotation, it converts the Commit token

into the regular token for the new ring, replacing the memb list and memb index

�elds by the rtr �eld. At this point, the new ring is formed but not yet installed,

and the execution of the recovery protocol begins.

The processors use the new ring to retransmit messages from their old rings

that must be exchanged to maintain agreed and safe delivery guarantees. In one

atomic action, each processor delivers the exchanged messages to the application

along with Con�guration Change messages, installs the new ring, and shifts to the

Operational state (Figure 7). The recovery protocol is described in more detail in

Section 7.

When a processor starts or restarts, it �rst forms and installs a singleton ring,

consisting of only the processor itself. The processor then broadcasts a Join message

containing the value of my ring id.seq, obtained from its stable storage, and shifts

to the Gather state.

The membership protocol described above is guaranteed to terminate in bounded

time because proc set and fail set increase monotonically within a �xed �nite do-

main, because timeouts bound the time that a processor spends in each of the

states, and because an additional failure (which increases the fail set) is forced to

prevent the repetition of a proposed membership. In the base case, the membership,

proc set � fail set, consists of a single processor identi�er.
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Regular token received:

same as in Operational state except get messages from retrans message queue

instead of new message queue and before forwarding the token execute:

if retrans message queue is not empty then

if token.retrans 
g = false then

token.retrans 
g := true

else if token.retrans 
g = true and I set it then

token.retrans 
g := false

if token.retrans 
g = false then

increment my retrans 
g count

else my retrans 
g count := 0

if my retrans 
g count = 2 then

my install seq := token.seq

if my retrans 
g count� 2 and my aru� my install seq and my received 
g = false then

my received 
g := true

my deliver memb := my trans memb

if my retrans 
g count � 3 and token.aru � my install seq on last two rotations then

call Shift to Operational

Regular message received:

reset Token Retransmission timeout

add message to receive message queue

update my aru

if retransmitted message from my old ring then

add to receive message queue for old ring

remove message from retrans message queue for old ring

Foreign message from processor q received:

discard message

Join message from processor q received:

if q in my new memb and message.ring seq � my ring id.seq then

execute code for receipt of Join message in Commit state

execute code for Token Loss timeout expired in Recovery state

Commit token received by new representative:

convert Commit token to regular token

if retrans message queue is not empty then

token.retrans 
g := true

else token.retrans 
g := false

forward regular token

reset Token Loss and Token Retransmission timeouts

Token Loss timeout expired:

discard all new messages received on the new ring

empty retrans message queue

determine current old ring aru (it may have increased)

call Shift to Gather

Token Retransmission timeout expired:

retransmit token

reset Token Retransmission timeout

Fig. 6. The pseudocode executed by a processor in the Recovery state.
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Shift to Gather:

broadcast Join message containing my proc set, my fail set, seq = my ring id.seq

cancel Token Loss timeout and Token Retransmission timeouts

reset Join and Consensus timeouts

for all r in my proc set do

consensus[r] := false

consensus[my id] := true

state := Gather

Shift to Commit:

update memb list in Commit token with my ring id, my aru, my received 
g,

my high delivered

my ring id := Commit token ring id

forward Commit token

cancel Join and Consensus timeouts

reset Token Loss and Token Retransmission timeouts

state := Commit

Shift to Recovery:

forward Commit token for the second time

my new memb := membership in Commit token

my trans memb := members on old ring transitioning to new ring

if for some processor in my trans memb received 
g = false then

my deliver memb := my trans memb

low ring aru := lowest aru for old ring for processors in my deliver memb

high ring delivered := highest sequence number of message delivered for old ring

by a processor in my deliver memb

copy all messages from old ring with sequence number > low ring aru

into retrans message queue

my aru := 0

my aru count := 0

reset Token Loss and Token Retransmission timeouts

state := Recovery

Shift to Operational:

deliver messages deliverable on old ring (at least up through high ring delivered)

deliver membership change for transitional con�guration

deliver remaining messages from processors in my deliver memb in

transitional con�guration

deliver membership change for new ring

my memb := my new memb

my proc set := my memb

my fail set := empty set

state := Operational

Fig. 7. The pseudocode executed by a processor when shifting between states.

7. THE RECOVERY PROTOCOL

The objective of the recovery protocol is to recover the messages that had not been

received when the membership protocol was invoked, and to enable the processors

transitioning from the same old con�guration to the same new con�guration to

deliver the same messages from the old con�guration. The recovery protocol also

provides message delivery guarantees, and thus maintains extended virtual syn-
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chrony, during recovery from failures. Maintenance of extended virtual synchrony

is essential to applications such as fault-tolerant distributed databases.

7.1 The Data Structures

The recovery protocol uses the following data structures in addition to those above.

Regular Token Field

The regular token has the following additional �eld:

� retrans 
g: A 
ag that is used to determine whether there are any additional old ring

messages that must be rebroadcast on the new ring.

Local Variables

The recovery protocol also depends on the following local variables:

� my new memb: The set of identi�ers of processors on the processor's new ring.

� my trans memb: The set of identi�ers of processors that are transitioning from the

processor's old ring to its new ring.

� my deliver memb: The set of identi�ers of processors whose messages the processor

must deliver in the transitional con�guration.

� low ring aru: The lowest aru for the old ring for processors in my deliver memb.

� high ring delivered: The highest message sequence number such that some processor

delivered the message with that sequence number as safe on the old ring.

� my install seq: The highest new ring sequence number of any old ring message trans-

mitted on the new ring.

� retrans message queue: A queue of messages from the old ring awaiting retransmission

to ensure that all remaining processors from the old ring have the same set of messages.

� my retrans count: The number of successive token rotations in which the processor has

received the token with retrans 
g false.

7.2 The Protocol

A processor executing the recovery protocol takes the following steps:

(1) Exchange messages with the other processors that were members of the same

old ring to ensure that they have the same set of messages broadcast on the

old ring but not yet delivered.

(2) Deliver to the application those messages that can be delivered on the old ring

according to the agreed or safe delivery requirements, including all messages

with old ring sequence numbers less than or equal to high ring delivered.

(3) Deliver the �rst Con�guration Change message, which initiates the transitional

con�guration.

(4) Deliver to the application further messages that could not be delivered in agreed

or safe order on the old ring (because delivery might violate the requirements

for agreed or safe delivery), but that can be delivered in agreed or safe order

in the smaller transitional con�guration.

(5) Deliver the second Con�guration Change message, which initiates the new reg-

ular con�guration.

(6) Shift to the Operational state.
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Steps 2 through 6 involve no communication with other processors and are per-

formed as one atomic action. The pseudocode executed by a processor to complete

these steps is given in Figure 6.

Exchange of Messages from the Old Ring

In the �rst step of the recovery protocol, each processor determines the lowest

my aru of any processor from its old ring that is also a member of the new ring.

The processor then broadcasts on the new ring every message for the old ring that

it has received and that has a sequence number greater than the lowest my aru.

The retrans 
g �eld in the token is used to determine when all old ring messages

have been retransmitted. This exchange of messages ensures that each processor

receives as many messages as possible from the old ring.

Each such message is broadcast with a new ring identi�er, and encapsulates the

old ring message with its old ring identi�er. The new ring sequence numbers of

these messages are used to ensure that messages are received; the old ring sequence

numbers are used to order messages as messages of the old ring. Messages from an

old ring retransmitted on the new ring are not delivered to the application by any

processor that was not a member of the old ring. No new messages originated on

the new ring are broadcast in the Recovery state.

Delivery of Messages on the Old Ring

For each message, the processor must determine the appropriate con�guration in

which to deliver the message. A processor can deliver a message in agreed order

for the old ring if it has delivered all messages originated on that ring with lower

sequence numbers. A processor can deliver a message in safe order for the old ring

(1) if it has received the old ring token twice in succession with the aru at least equal

to the sequence number of the message, or (2) if some other processor has already

delivered the message as safe on the old ring as indicated by high ring delivered.

The processor sorts the messages for the old ring that were broadcast on the new

ring into the order of their sequence numbers on the old ring, and delivers messages

in order until it encounters a gap in the sorted sequence or a message requiring

safe delivery with a sequence number greater than high ring delivered. Messages

beyond this point cannot be delivered as safe on the old ring, but may be delivered

in a transitional con�guration.

The processor then delivers the �rst Con�guration Change message, which con-

tains the identi�er of the old regular con�guration, the identi�er of the transitional

con�guration, and the membership of the transitional con�guration. The mem-

bership of the transitional con�guration is my trans memb. The identi�er of the

transitional con�guration has a sequence number one less than the sequence num-

ber of the new ring, and the representative's identi�er is chosen deterministically

from my trans memb.

Delivery of Messages in the Transitional Con�guration

Following the �rst Con�guration Change message, the processor delivers in order

all remaining messages that were originated on the old ring by processors in my de-

liver memb. The processor then delivers a second Con�guration Change message,

which contains the identi�er of the transitional con�guration, the identi�er of the

new regular con�guration, and the membership of the new regular con�guration.

The processor then shifts to the Operational state.
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Note that some messages cannot be delivered on the old ring or even in the

transitional con�guration because delivery of those messages might violate causality.

Such messages follow a gap in the message sequence. For example, if processor p

originates or delivers message m

1

before it originates message m

2

and processor q

received m

2

but did not receive m

1

in the message exchange, then q cannot deliver

m

2

because causality would be violated. Here p is not in the same transitional

con�guration as q because, if it were, then q would have received all of the messages

originated by p before or during the message exchange.

Failure of Recovery

If the recovery fails while the recovery protocol is being executed, some processors

may have installed the new ring while others have not. Prior to installation, a

processor's old ring is the ring of which it was a member when it was last in the

Operational state. Each processor must preserve its old ring identi�er until it

installs a new ring.

When a processor delivers a message in safe order in a transitional con�guration,

it must have a guarantee that each of the other members of the con�guration will

deliver the message before it installs the new ring, unless that processor fails. If a

processor does not install the new ring, it will proceed in due course to install a dif-

ferent new ring with a corresponding transitional con�guration. It must deliver the

message in that transitional con�guration in order to honor the delivery guarantee.

Thus, if a processor �nds the received 
g in the Commit token set to true for

every processor in my trans memb, it must retain the old ring messages origi-

nated by members ofmy deliver memb and deliver them as safe inmy trans memb,

the transitional con�guration for the new ring that it actually installs. Note that

my trans memb is a subset of my deliver memb and that my trans memb must de-

crease on successive passes through the Recovery state before a new ring is installed.

7.3 An Example

As shown in Figure 8, a ring containing processors p, q, r, s and t partitions, so

that p becomes isolated while q, r, s and t merge into a new ring with u and v.

Processors q, r, s and t successfully complete the recovery protocol and deliver

two Con�guration Change messages, one to switch from the regular con�guration

fp; q; r; s; tg to the transitional con�guration fq; r; s; tg and one to switch from the

transitional con�guration fq; r; s; tg to the regular con�guration fq; r; s; t; u; vg.

Processors q, r, s and t may not be able to deliver all of the messages originated

in the regular con�guration fp; q; r; s; tg, because they may not have received some

of the messages from p before p became isolated; however, it can be guaranteed

that they deliver all of the messages originated by a processor in the transitional

con�guration fq; r; s; tg. Similarly, processors q, r, s and t may not be able to

deliver a message as safe in the regular con�guration fp; q; r; s; tg because they may

have no information as to whether p had received the message before it became

isolated; however, it can be guaranteed that they deliver the message as safe in

the transitional con�guration fq; r; s; tg. The �rst Con�guration Change message

separates the messages for which delivery guarantees can be provided in the regular

con�guration fp; q; r; s; tg from the messages for which delivery guarantees apply in

the reduced transitional con�guration fq; r; s; tg.
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regular 
configuration

transitional
configuration

pqrst

p

p
qrst

uv

uv

qrstuv

Fig. 8: Regular and transitional con�gurations. The vertical lines represent total or-

ders of messages, and the horizontal lines represent Con�guration Change messages.

Extended virtual synchrony does not, of course, solve all of the problems of

maintaining consistency in a fault-tolerant distributed system, but it does provide

a foundation upon which these problems can be solved. Consider, for example, the

set of messages delivered by processor p. Prior to the �rst Con�guration Change

message delivered by p to terminate the regular con�guration fp; q; r; s; tg, there

are no missing messages. In the transitional con�guration, p delivers all remaining

messages originated by itself and also other messages that have become safe. There

may, however, be messages broadcast by processors q, r, s and t that are not

available to, and are not delivered by, processor p. After the second Con�guration

Change message, p is a member of the regular con�guration fpg, and p does not

deliver messages from the other processors.

When p rejoins the other processors in some subsequent con�guration, the appli-

cation programs must update their states, using application-speci�c algorithms, to

re
ect activities that were not communicatedwhile the system was partitioned. The

Con�guration Change messages warn the application that a membership change oc-

curred, so that the application programs can take appropriate actions based on the

membership change. Extended virtual synchrony guarantees a consistent order of

message delivery, which is essential if the application programs are to reconcile their

states following repair of a failed processor or remerging of a partitioned network.

8. THE FLOW CONTROL MECHANISM

The Totem protocol is designed to provide high performance under high load. The

performance measures we consider are throughput (messages ordered per second)

and latency (delay from message origination to delivery in agreed or safe order).

E�ective 
ow control is required to achieve the desired performance.

With point-to-point communication, positive acknowledgment protocols, such as

the sliding-window protocol, have been re�ned to provide excellent 
ow control.

However, with broadcast and multicast communication, positive acknowledgment

protocols result in excessive numbers of acknowledgments. Rate-controlled proto-

cols have attracted attention recently, but have the disadvantage for broadcast and

multicast communication that the transmission rate must be set for each processor

individually rather than for the multicast group. With bursty communication, the
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maximum transmission rate for a processor must be set to a value that is unaccept-

ably low, even when other processors have few messages to transmit.

A basic characteristic of reliable ordered broadcast and multicast protocols is

that the rate of broadcasting messages cannot exceed the rate at which the slowest

processor can receive messages. At higher rates of broadcasting, the input bu�er of

the slowest processor will become full and messages will be lost. In our experience,

this is the primary cause of message loss. Retransmission of lost messages increases

the message tra�c and reduces the e�ective transmission rate.

The Totem single-ring protocol uses a simple 
ow control mechanism to control

the maximum number of messages broadcast during one token rotation. If a pro-

cessor is unable to process messages at the rate at which they are broadcast, one or

more messages will be in its input bu�er when the token arrives. Before process-

ing the token and broadcasting messages, a processor must empty its input bu�er.

Thus, the rate of broadcasting messages is reduced to the rate at which messages

can be handled by the slowest processor. If the maximum number of messages

broadcast during any one token rotation is limited by the size of each processor's

input bu�er, then input bu�er over
ow cannot occur.

When the rate of broadcasting is not equally spread across all processors, the

protocol can be modi�ed to allow the token to visit more than once per token

rotation those processors that have the highest transmission rates, and to allow

those processors to transmit more messages on each visit. To minimize the latency,

the rate at which the token visits a processor should be approximately proportional

to the square root of the rate at which the processor broadcasts [Boxma et al. 1990].

8.1 The Data Structures

Regular Token Fields

The 
ow control mechanism depends on two �elds of the regular token:

� fcc: A count of the number of messages broadcast by all processors during the previous

rotation of the token.

� backlog: The sum of the number of new messages waiting to be transmitted by each

processor on the ring at the time at which that processor forwarded the token during

the previous rotation.

Flow Control Constants

The 
ow control mechanism also depends on two global constants:

� window size: The maximum number of messages that all processors are allowed to

broadcast in any token rotation.

� max messages: The maximum number of messages that each processor is allowed to

broadcast during one visit of the token.

These constants can be determined analytically from the number of processors and

their characteristics, or can be negotiated during ring formation. The constant

max messages may be di�erent for di�erent processors.

Local Variables

Each processor maintains the following local variables:



The Totem Single-Ring Ordering and Membership Protocol � 27

� my trc: The number of messages broadcast by this processor on this rotation of the

token (my this rotation count).

� my pbl: The number of new messages waiting to be transmitted by this processor when

it forwarded the token on the previous rotation (my previous backlog).

� my tbl: The number of new messages waiting to be transmitted by this processor when

it forwards the token on this rotation (my this backlog).

The values of my pbl and my tbl are limited by the amount of bu�er space available

for messages awaiting transmission.

8.2 The Algorithm

The value of my trc, the number of messages broadcast by this processor on this

token rotation, is subject to the following constraints:

my trc � max messages: The number of messages broadcast by this processor

must not exceed the maximumnumber it is allowed to broadcast during one visit

of the token.

my trc � window size � fcc: The number of messages broadcast by this pro-

cessor must not exceed the window size minus the number of messages broadcast

in the previous rotation of the token.

my trc � window size � my tbl=(backlog + my tbl � my pbl): The number

of messages broadcast by this processor must not exceed its fair share of the

window size, based on the ratio of its backlog to the sum of the backlogs of all

the processors as they released the token during the previous rotation.

The backlog mechanism achieves a more uniform transmission rate for individual

processors under high, but not overloaded, tra�c conditions than does the simple

window-size mechanism used by FDDI.

9. IMPLEMENTATION AND PERFORMANCE

The Totem single-ring ordering and membership protocol has been implemented in

the C programming language on a network of Sun 4/IPC workstations connected by

an Ethernet. The implementation uses only standard Unix features and is highly

portable. It has been transferred from our Sun workstations to DEC and SGI

workstations and has worked with little modi�cation.

The implementation uses the UDP broadcast interface in the Unix operating

system SunOS 4.1.1 with Sun's default kernel allocations. One UDP socket is used

for all broadcast messages, and a separate UDP socket is used by each processor

to receive the token from its predecessor on the ring. The input bu�ers are a

combination of the bu�ers managed by the physical Ethernet controller and those

managed by the Unix UDP service. Four bytes of stable storage are required to

store the ring sequence number.

We have measured the performance of our implementation on a network of �ve

Sun 4/IPC workstations, each ready to broadcast at all times with minimal ex-

traneous load on the processors and on the Ethernet. For each measurement, the

window size and max messages were adjusted to the maximum values for which

message loss is negligible in order to maximize throughput.

The throughput was measured for equal numbers of messages broadcast by all

processors on the ring and also for all messages broadcast by a single processor.



28 � Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, P. Ciarfella

Message Size in Bytes

M
es

sa
g

es
 O

rd
er

ed
 p

er
 S

ec
o

n
d

0 200 400 600 800 1000 1200 1400
500

600

700

800

900

1000

1100

1200

1300
Five Sun 4/IPC Processors
Ethernet

One processor
broadcasts all messages

All processors
broadcast equally

Messages Originated per Second

M
ill

is
ec

o
n

d
s

0 200 400 600 800 1000
0

20

40

60

80

To
ke

n 
Rot

at
io

n

Latency to

Agreed Delivery

La
te

nc
y 

to

Saf
e 

Del
ive

ry

Five Sun 4/IPC Processors
Ethernet, 1024 Byte Messages

Fig. 9: To the left, the throughput as a function of message size. To the right, the

latency to agreed and safe delivery as a function of load.

As the left graph of Figure 9 shows, there was little di�erence in the throughput.

With 1024 byte messages, more than 800 messages are ordered per second. For

smaller messages, over 1000 messages are ordered per second. The highest prior

rates of message ordering for reliable totally ordered message delivery for 1024 byte

messages are about 300 messages per second for the Transis system using the same

equipment and for the Amoeba system using equipment of similar performance.

We have also investigated the latency from origination to delivery of a message

in agreed and safe order; a detailed analysis can be found in [Moser and Melliar-

Smith 1994]. The right graph of Figure 9 shows the mean latency to agreed and safe

delivery for Poisson arrivals at lower, more typical loads for 1024 byte messages.

At low loads (e.g., 400 ordered messages per second which is much more than the

maximumthroughput for prior protocols), the latency to agreed delivery is under 10

milliseconds. Even at 50% useful utilization of the Ethernet (625 ordered messages

per second), the latency to agreed delivery is still only about 13 milliseconds. In

general, the latency to agreed delivery is approximately half the token rotation

time and the latency to safe delivery is approximately twice the token rotation

time, except at very high loads where the latency is dominated by queueing delays

in the bu�ers.

Other performance characteristics of interest are the time to recover from token

loss and the time to execute the membership protocol and recon�gure the system

when failures occur. With the token retransmission mechanism enabled, the time

to return to normal operation after loss of the token is on average 16 milliseconds.

With the token retransmission mechanism disabled, loss of the token triggers a

Token Loss timeout and forces a complete reformation of the membership. The

time to form a new ring, generate a new token, recover messages from the old

ring, and return to normal operation is on average the Token Loss timeout plus 40

milliseconds, with the Token Loss timeout set to 100 milliseconds.
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10. CONCLUSION

The Totem single-ring protocol provides fast reliable ordered delivery of messages

in a broadcast domain where processors may fail and the network may partition.

A token circulating around a logical ring imposed on the broadcast domain is used

to recover lost messages and to order messages on the ring. Delivery of messages

in agreed and safe order is provided.

The membership protocol handles processor failure and recovery, as well as net-

work partitioning and remerging. Extended virtual synchrony ensures consistent

actions by processors that fail and are repaired with stable storage intact and in

networks that partition and remerge. A recovery protocol that maintains extended

virtual synchrony during recovery after a failure has been provided.

The 
ow control mechanism avoids message loss due to bu�er over
ow and pro-

vides signi�cantly higher throughput than prior total ordering protocols. Given the

high performance of Totem, there is no need to provide a weaker message ordering

service, such as causally ordered delivery, because totally ordered agreed delivery

can be provided at no greater cost. Moreover, applications can be programmed

more easily and more reliably with totally ordered messages.

Continuing work on Totem is exploiting the single-ring protocol to provide more

general services. Agreed and safe delivery services, as well as membership services,

are being provided to multiple rings interconnected by gateways. It remains to be

investigated whether the exceptional performance of the Totem single-ring protocol

can be sustained when Totem is extended to multiple rings.
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