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Abstract

Group communication protocols greatly simplify the de-

sign of fault-tolerant distributed systems. Most of those pro-

tocols focus on node redundancy rather than on network re-

dundancy. The Totem Redundant Ring Protocol allows the

use of multiple redundant local-area networks. The partial

or total failure of a network remains transparent to the ap-

plication processes. The distributed system remains opera-

tional while an administrator reacts to an alarm raised by

the Totem Redundant Ring Protocol. The user can choose

between active, passive and active-passive replication of the

network.

1. Introduction

Group communication protocols [1, 2, 4, 12] must pro-

vide reliable delivery, ensured either by an underlying re-

liable protocol or by the group communication protocol it-

self. Properties such as virtual synchrony [4] and extended

virtual synchrony [16] ease the maintenance of consistency

of replicated data. Systems that are connected by a wide-

area network [13, 20, 22] have a good chance of remaining

operational if parts of the network fail. Local-area networks

(LANs), on the other hand, often employ a single switch or

a hub. If that component fails, no node can communicate

with any other node and the system partitions into single-

tons. Systems that follow the primary component model [4]

shut down all nodes, while other systems keep the nodes up,

even though they cannot do useful work when the commu-

nication links are severed.

To allow a distributed system to tolerate network faults,

the network itself must be replicated. Although replicated

wide-area networks are not practical, LANs can be repli-

cated cheaply. However, the mere presence of a redundant

network does not overcome network faults. A special pro-

tocol must be employed to coordinate redundant networks.
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Such a protocol can be used in distributed applica-

tions with high availability requirements, such as financial,

avionic, or military applications, that are based on clusters

of computers, instead of dedicated hardware. The range of

applications that can benefit from a redundant network pro-

tocol extends from real-time radar image analysis to back-

end servers for financial applications. Other applications

include more general fault tolerance infrastructures, such as

AQuA [8] or Eternal [18], which build on a group commu-

nication protocol.

To enable the use of redundant networks in a fault-

tolerant distributed system, we have developed the Totem

Redundant Ring Protocol (Totem RRP), which is based on

the Totem Single Ring Protocol (Totem SRP) [2]. The

Totem SRP is a highly efficient group communication pro-

tocol for Ethernet-based LANs. Totem imposes a logical

token-passing ring on the network. The token is used to

achieve reliable delivery of messages, causal and total mes-

sage ordering, flow control and fault detection. The Totem

SRP also provides group membership services.

The Totem RRP provides the same services to applica-

tion processes as the Totem SRP. However, the Totem RRP

utilizes multiple networks to achieve resilience against par-

tial or total network faults. Network faults remain trans-

parent to the application processes, and the system remains

operational as long as a single network is operational.

As shown in Section 8, the Totem RRP increases both

reliability and throughput. This characteristic is important

for building fault-tolerant distributed systems that handle

heavy message loads, such as telecommunication switches

and distributed real-time image processing systems, or reli-

able network storage devices.

2. The Totem Single Ring Protocol

The Totem Single Ring Protocol (SRP) is a group com-

munication protocol designed for Ethernet-based LANs.

The Totem SRP uses the native Ethernet broadcast service

to broadcast messages efficiently. All data is sent in the

form of packets using UDP.



Reliable message delivery and message ordering is

achieved by imposing a logical token-passing ring on all

participating nodes. A node is allowed to broadcast a mes-

sage only if it holds the token. After sending the messages

that have accumulated in its send queue, a node passes the

token to the next node on the ring. For performance reasons,

tokens are not broadcast. If the traffic is light, the token ro-

tates very quickly. Unicasting the token implies that a node

receives the token only once per rotation.

The strict sending schedule allows Totem to utilize an

Ethernet far beyond the usual point of saturation. The re-

quirement that only one node at a time can transmit data

prevents collisions on the medium. With Totem, a through-

put of more than 9,000 1 Kbyte msgs/sec has been achieved

on a 100Mbit/sec Ethernet, which corresponds to a utiliza-

tion of almost 90% (see Section 8).

When the application wishes to send a message, it passes

the message to Totem, which stores the message in its send

queue. The next time a node receives the token, it dequeues

the messages from its send queue and broadcasts them in

the order in which they were enqueued. Totem includes in

each message header a unique sequence number. The to-

ken carries the sequence number seq of the last message

broadcast on the ring. For each message that it broadcasts,

a node increments seq and puts it in the message header.

After broadcasting its messages, the node copies seq into

the token and passes the token to the next node on the ring.

The sequence number attached to each message imposes a

global order on messages. Each node delivers the messages

in the order of the sequence numbers included in the head-

ers.

If a node misses a message, it detects a gap in the se-

quence numbers when it receives the next message or the

token. If the gap still exists when the node receives the to-

ken, it puts a retransmission request into the token. The next

token holder checks if it has a copy of the requested mes-

sages. If it does, it broadcasts those messages and removes

the request from the token. Otherwise, it leaves the request

in the token and forwards the token to the next token holder.

If two nodes A and B are missing the same message m,

only a single retransmission will occur. Thus, if a node C

retransmits m because it received A’s request, B will re-

ceive m as well. As explained in Sections 5 and 6, this

behavior simplifies the design of the Totem RRP.

In addition to ensuring reliable delivery, the token also

serves as a fault detector. If a node has not received the

token for a certain period of time, it starts the membership

protocol. To avoid triggering the membership protocol be-

cause of token loss, a node periodically resends a copy of

the last token it sent, as long as it has not received a mes-

sage with a sequence number greater than that in the token.

The reception of such a message indicates that the token has

been received successfully by the next node on the ring. If a

node receives a token with the same sequence number as the

previous one, it recognizes that the token was retransmitted

and ignores the token.1

3. Fault Model

The Totem protocol is designed to tolerate omission

faults and node faults. To tolerate network faults, the

distributed system must employ redundant communication

channels. By connecting nodes through multiple networks,

communication can be maintained as long as one network

remains operational.

Throughout the rest of this paper, we assume N to be the

number of redundant networks. We refer to the first network

as n0, the second network as n00, and so on. Messages (to-

kens) are denoted as m
s

(t
s

), where s is the sequence num-

ber of the message (token). To distinguish different copies

of a message (token) that are sent over different networks,

we mark them as follows: m0

s

(t0
s

) is the copy of m
s

(t
s

)

sent via n0, m00

s

(t00
s

) is sent via n00, etc.

In the case of redundant networks, the types of faults

tolerated are:

� A node A is unable to send any data via a particular

network nx.

� A node A is unable to receive any data via a particular

network nx.

� A network nx is unable to deliver any data from some

subset of nodes to some other subset of nodes. These

sets can overlap, and can even comprise the entire set

of nodes.

Such types of faults do not result in membership changes

because the affected nodes are still able to communicate

through another network. Moreover, the network fault is

hidden from the user application. However, the system can

handle only so many network faults before it fails. Conse-

quently, the Totem RRP monitors the behavior of the net-

works and raises an alarm if the network behavior deviates

from normal behavior.

If the Totem RRP detects a network fault, it marks the

network as faulty. The Totem network monitor, which oper-

ates entirely locally, is based on receiving messages and to-

kens; it does not send messages or probe connections. Once

a monitor detects a network fault, the Totem RRP marks the

network as failed and stops sending messages over it. At

the same time, the Totem RRP issues a fault report to the

user application process that is connected to it. Although

1If the token completes an entire rotation without any message being

broadcast, the token sequence number remains unchanged. To prevent a

node from regarding the new token as an identical copy of a token that it

has seen previously, the token contains a rotation counter, which the ring

leader increments every time the token completes one rotation.
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a node does not send via networks it has marked as faulty,

it does accept messages that it receives via those networks,

because the network fault might not yet have been detected

by the network monitors of all other nodes. Consequently,

those nodes keep sending messages and tokens via those

networks.

A node’s refusal to send via a particular network is inter-

preted as a fault by the monitors of the other nodes. If those

monitors have not yet done so, they now mark the network

as faulty and issue a fault report. The order in which the

fault reports are issued and the content of those reports aids

the user in diagnosing of the problem.

4. Replication Styles

For the Totem Redundant Ring Protocol, we have imple-

mented three different styles of network replication:

� Active replication: In active replication, all messages

and tokens are sent over all networks at the same

time. All data is received multiple times. The band-

width consumption increases linearly with the number

N of networks. The maximum throughput equals the

throughput of the slowest network. The system is able

to mask the loss of a message on up to N-1 networks

without any message retransmission delay.

� Passive replication: In passive replication, messages

are sent alternately over one of the available net-

works. The bandwidth consumption equals the band-

width consumption of an unreplicated system. In the

fault-free case, the maximum throughput equals the

sum of the throughputs of all networks. If one of the

networks fails, the maximum throughput is reduced. If

a message is lost, Totem must wait until the message

has been retransmitted.

� Active-passive replication: This replication style is

a mixture of active replication and passive replication.

Every message or token is sent overK networks simul-

taneously (1 < K < N ). The bandwidth consumption

increases K-fold. The system is able to mask the loss

of a message on up to K-1 networks without any mes-

sage retransmission delay.

5. Active Replication

Using active replication, the Totem RRP sends every

message over all N networks. For optimal performance,

all networks should exhibit similar throughput and similar

latency. The Totem RRP sends different copies of messages

(tokens) in the same order: m0

s

(t0
s

) is sent first, m00

s

(t00
s

) is

sent second, and so on.

In the fault-free case, UDP over IP over Ethernet pre-

serves the sending order of messages if they are sent via the

same network to the same recipient.2 The FIFO behavior is

violated only when a message is dropped. However, due to

the asynchronous nature of the system, nodes may receive

messages in an arbitrary order if the messages are sent via

different Ethernets.

Assume that a sender sends a message m via multiple

networks ni, 1 � i � N . Using active replication, the

following inequalities hold for the timing of events for any

x, y with x < y:

t

send

(m

x

) < t

send

(m

y

) (1)

t

send

(m

x

) < t

re
v

(m

x

) (2)

t

send

(m

y

) < t

re
v

(m

y

) (3)

From inequalities (1) and (3), it follows that

t

send

(m

x

) < t

re
v

(m

y

) (4)

No relation between t
re
v

(m

x

) and t
re
v

(m

y

) exists.

Considering the relationship between a pair of messages,

the following additional inequalities hold:

t

send

(m

x

1

) < t

send

(m

y

1

) < t

send

(m

x

2

) < t

send

(m
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2
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t
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v

(m
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2

) (6)

t

re
v

(m
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1

) < t

re
v

(m
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2

) (7)

Again, no relationship between t

re
v

(m

x

1

) and

t

re
v

(m

y

2

), or between t

re
v

(m

y

1

) and t

re
v

(m

x

2

) ex-

ists. Obviously, these inequalities also hold if we replace

any of the messages m with a token t. For any pair of

messages (tokens) and any pair of networks, six possible

scenarios arise, as shown in Figure 1.

When using active replication, six additional require-

ments for the Totem RRP must be met in addition to the

Totem SRP requirements:

A1: Each message must be delivered only once to the ap-

plication. All duplicate messages must be suppressed.

To keep the message delivery latency low, the Totem

RRP must attempt to deliver a message when it is first

received.

A2: A node can request a retransmission only if it has not

received a message over any network. None of the sce-

narios shown in Figure 1 can trigger a retransmission

for either Totem messages or tokens.

2This does not hold for wide-area IP networks because IP might choose

different routes for different packets. Moreover, it does not hold for Eth-

ernets if the messages are sent to different recipients via UDP. The sender

s might send a packet m
2

to node r
2

before it sends a packet m
1

to node

r

1

, even if m
1

is passed to the UDP stack before m
2

. A possible reason

is that s might still be waiting for the ARP packet that resolves r
1

’s MAC

address.
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sender receiver
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Scenario 6

sender receiver

message/token sent via network nx

message/token sent via network ny

Figure 1. Timing of sending (receiving) mes-
sages sent via two networks.

A3: The networks must remain synchronized. If the net-

works are loaded differently, or if the networks have

different speeds, the slower network must not fall be-

hind.

A4: The Totem RRP must make progress even if a message

or token is lost, or if a network fails.

A5: The Totem RRP must eventually detect a permanent

failure of a network.

A6: The Totem RRP network fault detector must not be

triggered by sporadic messages or token loss.

The algorithm given in Figure 2 transforms the Totem

SRP into the Totem RRP for active replication. The algo-

rithm forms a layer that resides between the Totem SRP and

the networks. Each message and token is sent on all N net-

works.

When a message is received, it is passed directly to the

Totem SRP. Identical copies of messages are destroyed by

the Totem SRP. Because retransmitted messages are iden-

tical to the original messages, the Totem SRP implements

a filter based on sequence numbers to eliminate duplicate

messages. This mechanism also filters duplicate messages

from different networks and, therefore, satisfies Require-

ment A1.

Unlike messages, tokens are passed to the Totem SRP

only if they have been received via all non-faulty networks.

This condition is necessary to satisfy Requirements A2 and

A3. The Totem SRP tags retransmission requests to the

token; thus, a node cannot request the retransmission of a

message until it holds the token. Because of (6) and (7), all

copies of messages that have been sent before a token has

been sent, are received via all networks before all copies of

the token are received. This means that the Totem SRP has

received all outstanding messages before it processes the to-

ken and is able to issue a retransmission request (Require-

ment A2). Waiting for all copies of a token also prevents

the networks from losing synchrony (Requirement A3), be-

cause the token is passed to the Totem SRP after the last

copy of the token has been received.

The algorithm for active replication can cope with the

loss of multiple copies of a message. If all copies are lost,

the Totem SRP retransmission protocol resolves the prob-

lem. To guarantee progress when a token is dropped by

some of the networks, or when some networks fail, the

Totem RRP starts a token timer every time a new token is re-

ceived over any of the networks. The token is passed to the

Totem SRP when the token timer expires. All later copies

of the token are ignored. This strategy implements Require-

ment A4. Note that, once the timer is running, it will never

be restarted because a new token can arrive only after the

current token has completed another rotation.

To monitor the health of the networks, the Totem RRP

maintains a problem counter for each network. If a to-

ken timer expires, the Totem RRP increments the prob-

lem counter for all networks that did not deliver the token.

If the problem counter of a network exceeds a threshold,

the Totem RRP declares the network to be faulty. This

mechanism satisfies Requirement A5. To prevent the proto-

col from declaring an operational network as faulty simply

because a number of token losses accumulated over time,

a network’s problem counter is decremented periodically

(not shown Figure 2.). This mechanism ensures that Re-

quirement A6 is satisfied.

6. Passive Replication

Using passive replication, each node that runs the Totem

RRP establishes connections over all of its networks. It

sends a single copy of each message, and each token, over
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boolean faulty[N ℄ = false

boolean re
vLastToken[N ℄ = false

int problemCounter[N ℄ = 0

token lastToken = f0; 0; : : :g

sendMsg( m )

for ( i = 1; i � N ; i++ )

if ( faulty[i℄ = false )

broadcast m via network ni

sendToken( t )

for ( i = 1; i � N ; i++ )

if ( faulty[N ℄ = false )

send t to next token holder via network ni

recvMsg( m, nx )

deliver m to Totem SRP

recvToken( t, nx )

if ( t:seq > lastToken:seq )

lastToken = t

for ( i = 1; i � N ; i++ )

re
vLastToken[i℄ = false

re
vLastToken[x℄ = true

start token timer

if ( t:seq = lastToken:seq )

re
vLastToken[x℄ = true

for ( i = 1; i � N ; i++ )

if ( re
vLastToken[i℄ = false

^ faulty[i℄ = false )

delete t

return

stop token timer

deliver t to Totem SRP

tokenTimerExpired()

for ( i = 1; i � N ; i++ )

if ( re
vLastToken[i℄ = false )

problemCounter[i℄ + +

for ( i = 1; i � N ; i++ )

if ( problemCounter[i℄ � threshold )

faulty = true

deliver lastToken to Totem SRP

Figure 2. Algorithm for active replication.

one of the networks. A node assigns messages and tokens

to the networks in a round-robin fashion.

As for active replication, passive replication requires the

Totem protocol to satisfy the following additional require-

ments:

m1
x

t2
z

m2
y

sender receiver

Scenario 1

m1
x

m3
z

m2
y

sender receiver

Scenario 2

t3
w

Figure 3. Out-of-order reception when using
passive replication.

P1: A node can request a retransmission of a message only

if the message has been dropped. None of the scenar-

ios given in Figure 3 can trigger a retransmission of a

delayed message.

P2: The networks must remain synchronized. If the net-

works are loaded differently, or if networks of different

speeds are used, the slower network must not fall be-

hind.

P3: The Totem RRP must make progress even if a message

or token is lost, or if a network fails.

P4: The Totem RRP must eventually detect a permanent

failure of a network.

P5: The Totem RRP network fault detector must not be

triggered by sporadic messages or token loss.

These requirements are comparable to Requirements A2 to

A6 for active replication. Because only a single copy of a

message (token) is sent, there is no requirement for single

message (token) delivery.

As in the case of active replication, we describe an al-

gorithm that transforms the Totem SRP into the Totem RRP

for passive network replication. The algorithm given in Fig-

ure 4 again forms a layer between the Totem SRP and the

networks.

This algorithm sends a single copy of a message or a

token. Received messages are passed to the Totem SRP

directly. To satisfy requirement P1, the algorithm passes

the token to the Totem SRP only if no message is miss-

ing. If there are outstanding messages, the token is stored

in a token buffer and a timer is started. Upon expiration

of the timer, the contents of the token buffer are passed to

the Totem SRP. This step is necessary to make the algo-

rithm comply to Requirement P3. The token timer is never

restarted while it is active.

To improve performance (not necessary for correctness),

the Totem RRP checks for a running token timer each time

it receives a message. If the timer is running and no more

messages are missing, this message is the reason that the
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boolean faulty[N ℄ = false

int lastSeq[N ℄ = 0

token lastToken = f0; 0; : : :g

sendMsg( m )

do

sendMessageV ia = (sendMessageV ia+ 1)

mod N

until ( faulty[sendMessageV ia℄ = false )

broadcast m via network nsendMessageV ia

sendToken( t )

do

sendTokenV ia = (sendTokenV ia+ 1) mod N

until ( faulty[sendTokenV ia℄ = false )

send t to next token holder via network nsendTokenV ia

recvMsg( m, nx, s )

deliver m to Totem SRP

if ( anyMessagesMissing() = false

^ tokenTimerRunning() = true )

deliver lastToken to Totem SRP

stop token timer

messageMonitor(nx; s)

recvToken( t, nx )

if ( anyMessagesMissing() = false )

deliver t to Totem SRP

else

lastToken = t

start token timer

tokenMonitor(nx)

tokenTimerExpired()

deliver lastToken to Totem SRP

Figure 4. Algorithm for passive replication.

boolean re
vCount[N ℄ = false

monitor( nx )

re
vCount[n

x

℄ + +

for ( i = 1; i � N ; i++ )

if ( max(re
vCount[℄)� re
vCount[i℄ > threshold )

faulty[i℄ = true

Figure 5. Network monitor module for passive
replication.

token could not be delivered previously. Therefore, the

timer is disabled and the contents of the token buffer are

delivered. To provide fast recovery from message loss, the

timer’s timeout must be small. We chose a timeout of 10ms

for our experiments.

As in active replication, the token resolves the issue of

network desynchronization caused by differences in net-

work speeds or loads. The Totem SRP must wait until it

receives a new token before it can send any messages or

tokens. Because all networks participate in transferring to-

kens in a round-robin fashion, the system will resynchronize

when the token is sent via the slowest network. On average,

this happens every N th hop and, in the worst case, after

N � 1 complete rotations. This mechanism is sufficient to

fulfill Requirement P2.

The network health monitor for passive replication con-

sists of M+1 monitoring modules (whereM is the number

of nodes in the system): one module to monitor the message

traffic for each of the nodes and one module to monitor the

token traffic. Because tokens are unicast, the token monitor

module is limited to the sending unit of the token sender, the

receiving unit of the token receiver, and all network devices

that are in the direct path. Although this might not cover all

components of the networks, token monitoring is a useful

alternative during periods in which no messages are sent.

Message and token monitoring modules are identical and

are shown in Figure 5. Such a module counts the numbers

of messages or tokens for each network. It checks whether

all networks receive the same number of messages or to-

kens. If the difference in receptions exceeds a threshold,

the network with the smaller number is marked as faulty.

This mechanism ensures Requirement P4.

When running for an extensive period of time, spo-

radic loss events might accumulate and cause the monitor

module to declare a healthy network as faulty, which vio-

lates Requirement P5. This condition is prevented by slowly

increasing re
vCount for networks that lag behind. This

mechanism, which can be either time or message driven, is

not shown in Figure 5.

7. Active-Passive Replication

The active-passive replication style is a combination of

active replication and passive replication. It can be used if

there are at least three redundant networks available.

Active-passive replication uses a combination of the al-

gorithms described in Sections 5 and 6 for active replica-

tion and passive replication. A node broadcasts K copies

of each message and each token. Similar to passive repli-

cation, it sends messages and tokens to the networks in

a round-robin fashion: If a node has sent its last mes-

sage via network n

m, it sends the next message via net-

works n

(m+1)modN
; : : : ; n

(m+K)modN . A similar scheme
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Figure 6. Transmission rate of the Totem RRP
in msgs/sec for four nodes.

is used for sending tokens. If a node has sent its last to-

ken via network n

t, it sends the next token via networks

n

(t+1)modN
; : : : ; n

(t+K)modN .

On the receiver side, the active-passive replication algo-

rithm can be regarded as a two-stage pipeline consisting of

the algorithm used for passive replication, followed by the

algorithm used for active replication. The first stage mon-

itors the network by keeping track of the number of mes-

sages sent by each node via a particular network. It for-

wards all messages and all tokens to the second stage, which

passes a token if it has received K copies of the token or

when a timeout occurs. Again, duplicate messages are sup-

pressed higher up in the Totem SRP protocol stack.

8. Performance

We have investigated the performance of the Totem Re-

dundant Ring Protocol for two configurations. The first

configuration consists of four Pentium II 450MHz worksta-

tions, and the second configuration consists of six Pentium

III workstations with 900MHz and 1GHz clock frequency.

All machines are equipped with two 3Com 3C905C TX-

NM 100Mbit/s Ethernet network interface cards. The work-

stations ran the Linux operating system with kernel versions

2.2.15 and 2.2.17, which set the socket send and receive

buffers to 64 Kbytes.

We conducted experiments with different message sizes

for active replication and passive replication and for non-

replicated networks. We did not conduct any experiments

for active-passive replication, because it requires a mini-

mum of three networks and we had only two networks avail-

able to us.
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Figure 7. Transmission rate of the Totem RRP
in msgs/sec for six nodes.

During the experiments, every node sent as many mes-

sages as the Totem flow control mechanism permitted. Fig-

ures 6 and 7 display the total send rate of the system as a

function of message size, and Figures 8 and 9 show the uti-

lized bandwidth. The peaks for message lengths of 700 and

1400 bytes are caused by the optimal usage of the Ethernet

frame. The maximum frame size is 1518 bytes, of which

94 bytes are used for the Ethernet header and trailer, IPv4

header, UDP header and the Totem header. This results in

a maximum payload of 1424 bytes for each Ethernet frame.

If several messages can fit into that space, they are placed

into a single packet by the message packing algorithm. If a

message is longer than 1424 bytes, Totem splits it up into

multiple packets.

Figures 6 to 9 show that active replication is the most

expensive form of network replication. The overhead in-

troduced by broadcasting all messages reduces the payload

bandwidth up to 1000-1500 msgs/sec when compared to the

unreplicated case. As for unreplicated networks, the 100

Mbit/sec Ethernet is the bottleneck when using active repli-

cation. The reduction in throughput is caused by doubling

the number of calls to the network protocol stack.

Passive replication, on the other hand, allows the proto-

col to handle 2000-4000 Kbytes more payload every second

than a system that runs on a single Ethernet. The network

utilization of the two-way passively replicated network ex-

ceeds the capacity of a single 100 Mbit/sec Ethernet, but

does not approach twice the transmission rate of the non-

replicated system. This indicates that the available network

bandwidth is no longer the limiting factor. Instead, the

processing time associated with detecting and retransmit-

ting missing messages, imposing a total order on the mes-
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Figure 8. Transmission rate of the Totem RRP
in Kbytes/sec for four nodes.

10
2

10
3

10
4

0

2000

4000

6000

8000

10000

12000

14000

message length (bytes)

ba
nd

w
id

th
 (

K
by

te
s/

se
c)

passive replication 

no replication 

active replication 

Figure 9. Transmission rate of the Totem RRP
in Kbytes/sec for six nodes.

sages, and updating liveness information for all participat-

ing nodes determines the maximum throughput of the sys-

tem. With faster processors, we expect the gap to widen

between the throughput of the unreplicated system and the

throughput of a system that uses passive replication.

9. Related Work

Over the past 15 years, there has been much work on

group communication systems [1, 4, 5, 11, 15, 17]. Those

systems are useful both for fault tolerant and highly avail-

able applications and for groupware and cooperative work

applications.

The Isis, Horus and Ensemble systems [4, 23] provide

the services of multicast, causal multicast and atomic (total

order) multicast. Those group communication systems pro-

vide increasing flexibility in allowing the user to choose the

protocol most appropriate for the application. While those

systems provide excellent mechanisms for replicated pro-

cessing to protect against faults in processes and processors,

they do not provide mechanisms for replicated communica-

tion to protect against faults in the communication network.

The Trans/Total system [15] includes the Trans protocol

which provides a causal order on messages, and the Total

algorithm which converts this causal order into a total or-

der. The Transis system [1] is based on the Trans protocol

and on the Isis application programmer interface. Again,

mechanisms are provided for replicated processing but not

for replicated communication.

The real-time multicast protocol (RRTM) provides reli-

able ordered multicast communication for distributed real-

time systems [5]. RRTM guarantees real-time message de-

livery without relying on synchronized clocks. The layering

and modularization of RRTM allows an application to select

a particular combination of atomicity and degree of order-

ing. RRTM requires networks that provide multicast fea-

tures and that manage the group membership, but provides

no mechanisms to handle non-transient network faults.

The systems mentioned above focus primarily on over-

coming process and processor faults and transient network

faults. Some provision is made to handle network partition-

ing faults, which are regarded as the loss of one or more

processors. However, none of those systems is able to pro-

vide service in the presence of non-transient network faults.

The Software Implemented Fault Tolerance (SIFT) com-

puter [24] and the Fault Tolerant Multiprocessor (FTMP)

[10] are two systems designed for airplanes and space-

craft. Both systems use multiple point-to-point links to in-

terconnect the processors, which ensures that communica-

tion faults cannot disable the system, but which prevents the

system from scaling to more than a few processors.

The Tandem NonStopI, NonStopII, TXP, and VLX [9]

connect up to 16 CPUs via dual 13 MByte/sec buses

(Dynabuses). The buses tolerate hot-swapping of CPUs.

A four-way redundant fiber optic bus extension allows the

connection of up to 14 Dynabuses, which may be sev-

eral kilometers apart. Tandem’s Guardian operating sys-

tem exploits those interconnects to provide high availability

through transaction processing, rather than for fault toler-

ance using replication.

The Time-Triggered Protocol [14] is a hard real-time

group communication protocol based on specialized hard-

ware that accesses a shared bus. All components of the sys-

tem are two-way redundant, including the communication

8



buses. The protocol assigns communication time slots to

each sender according to a preplanned schedule. The sys-

tem provides a high quality of fault tolerance, being resilient

even to Byzantine faults, and protects the communication

media from being over-utilized by any component. How-

ever, the design requires each message to be transmitted

four times, and requires preplanned scheduling.

The Beowolf project [21] connects standard Linux work-

stations with multiple Ethernet networks to form a network

of workstations (NOW). Multiple networks are to increase

the available bandwidth of the cluster, rather than to achieve

fault tolerance.

In [6] Christian describes a synchronous atomic broad-

cast protocol that is based on multiple redundant networks.

Similar to our active approach, identical copies of a mes-

sage are broadcast via all networks. The author assumes

upper bounds for message delivery latency of the networks.

This protocol is used in the Advanced Automation System

(AAS) air traffic control network [7].

Delta-4 [19] is framework for a fault-tolerant real-time

computing system. To communicate to groups of repli-

cated objects an atomic multicast protocol, AMp, is used.

AMp was implemented for redundant token buses and token

rings, but can be adjusted to run on any broadcast channels.

In [3], the authors introduce a a reliable broadcast pro-

tocol based on redundant broadcast channels. Unlike the

other work discussed here, which is based on a crash fault

model, this protocol protects against Byzantine faults.

10. Conclusion

In this paper we have presented the Totem Replicated

Ring Protocol (RRP), a group communication system that

utilizes multiple networks to achieve resilience against net-

work faults. The Totem RRP supports three styles of repli-

cation: active, passive and active-passive replication. We

have measured the performance of the Totem RRP for active

and passive replication and have compared it with the per-

formance of an unreplicated system. Because of the addi-

tional network overhead, the system experiences a decrease

in performance when run on an actively replicated network.

Moreover, the throughput of the Totem RRP using passive

replication exceeds the throughput of the unreplicated sys-

tem while being more resilient against network faults.
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