
Extended Virtual Synchrony

L. E. Moser, Y. Amir, P. M. Melliar-Smith, D. A. Agarwal

Department of Electrical and Computer Engineering

University of California, Santa Barbara, CA 93106

Abstract. We formulate a model of extended vir-

tual synchrony that de�nes a group communication

transport service for multicast and broadcast com-

munication in a distributed system. The model ex-

tends the virtual synchrony model of the Isis system

to support continued operation in all components of

a partitioned network. The signi�cance of extended

virtual synchrony is that, during network partition-

ing and remerging and during process failure and re-

covery, it maintains a consistent relationship between

the delivery of messages and the delivery of con�gu-

ration changes across all processes in the system and

provides well-de�ned self-delivery and failure atomic-

ity properties. We describe an algorithm that imple-

ments extended virtual synchrony and construct a �l-

ter that reduces extended virtual synchrony to virtual

synchrony.

1 Introduction

In many applications in distributed systems messages

must be disseminated to multiple destinations. To

achieve better performance, protocols have been de-

veloped to exploit the multicast or broadcast capabil-

ities of existing local-area network hardware [1, 3, 5,

9, 11, 13]. The process group paradigm [7] is a useful

and appropriate addressing mechanism for multicast

and broadcast communication.

Within the process group paradigm, virtual syn-

chrony [4, 5, 6, 14] ensures that processes perceive

process failures and other con�guration changes as oc-

curring at the same logical time. The model of vir-

tual synchrony handles omission faults and fail-stop

faults, and regards recovered processes as new proc-

esses. When network partitioning occurs, the virtual

synchrony model also ensures that processes in at most

one connected component of the network, the primary

component, are able to make progress; processes in the

other components of the network are blocked.

Unfortunately, if a process fails and can recover

with stable storage intact, then inconsistenicies can

arise. Consider, for example, the failure of a process
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that was responsible for deciding the order of mes-

sages and informing other processes of that order. It

may decide an order and deliver messages locally in

that order but fail to communicate that order to other

processes. After removing the failed process from the

con�guration, the other processes may determine an

order without knowing the order chosen by the failed

process. If the failed process can recover with stable

storage intact and if the contents of its stable storage

can be a�ected by the order of delivery of messages,

the model of virtual synchrony must be extended.

Gateways, bridges and wireless communication in-

crease the probability of network partitioning, which

may also result in inconsistencies. For example, if the

process responsible for determining the order of mes-

sages becomes detached, it may continue to order and

deliver messages locally after it has become detached

but before it learns that it has become detached. The

order in which it delivers messages before becoming

detached may be inconsistent with the order in which

other processes deliver messages; a problem can arise

if a detached process can resume operation and re-

merge with the primary component. The extended

virtual synchrony model guarantees that processes in

all components of a partitioned network have a con-

sistent, though perhaps incomplete, history of the

system.

Moreover, in some applications it is not acceptable

to block processes that are not in the primary com-

ponent. The application should be allowed to deter-

mine which processing, if any, is appropriate while the

network is partitioned. To illustrate this point, we

present the following examples:

� An airline reservation system must continue to

sell tickets even if the system becomes parti-

tioned. Airlines have devised heuristics for use

in non-primary components, based only on local

data, that aim to maximize the number of tick-

ets that can be sold while minimizing the risk of

overbooking.

� An ATM machine, operating in a fully connected

system, records each transaction in its database,

checking that cumulative withdrawals do not ex-

ceed the account balance. When operating in a

non-primary component, however, it consults a

small database to authorize a withdrawal without

checking for cumulative withdrawals at di�erent

locations, and delays posting the transaction until

the system becomes reconnected.



� A radar system combines a number of sensors,

as well as a number of displays, in di�erent lo-

cations. The most accurate available informa-

tion, obtained from the sensor with the best view

should be displayed to the operator. In the case

of a network partition, however, it is better to dis-

play lower quality information from the connected

sensors than to do nothing.

In the design of the Totem protocol [3, 12], based

on our experience with the Trans and Total proto-

cols [11] and the Transis system [1, 2], we have ex-

tended the virtual synchrony model [4, 5, 6] of the

Isis system to handle network partitioning and remerg-

ing, as well as process failure and recovery. Extended

virtual synchrony establishes a consistent relationship

between delivery of messages and delivery of con�gu-

ration changes across all processes in the system, and

provides well-de�ned self-delivery and failure atomic-

ity properties.

2 The Model and Services Provided

A distributed system is a �nite set of processes that

communicate over a network by sending messages.

Each of the processes in the system has a unique iden-

ti�er. A process may fail and may subsequently re-

cover after an arbitrary amount of time with its sta-

ble storage intact. When a process recovers, it has the

same identi�er as before the failure. The network may

partition into some �nite number of components. The

processes in a component can receive messages broad-

cast by other processes in the same component, but

processes in two di�erent components are unable to

communicate with each other. Two or more compo-

nents may subsequently merge to form a larger com-

ponent.

Each process executes a low-level membership al-

gorithm to determine the processes that are members

of its component. This membership, together with a

unique identi�er, is called a con�guration. The mem-

bership algorithm ensures that all processes in a con-

�guration agree on the membership of that con�gu-

ration. The application is informed of changes in the

con�guration by the delivery of con�guration change

messages.

Each process also executes a reliable broadcast-

ing and ordering algorithm that associates an ordinal

number with each message. These ordinals impose a

total order on messages broadcast within a con�gura-

tion. Processes deliver messages to the application in

the order imposed by these ordinal numbers, an or-

dering that preserves causality. As an alternative to

the total ordering algorithm, we can consider an or-

dering algorithm that only imposes a partial order on

messages.

We distinguish between receipt of a message over

the communication medium, which may be out of

order, and delivery of a message to the application,

which may be delayed until prior messages in the order

have been delivered. Three message delivery services

are de�ned:

� Causal delivery, de�ned in the context of network

partitioning and remerging (cbcast in Isis)

� Agreed delivery, which guarantees a total order

of message delivery within each component and

allows a message to be delivered as soon as all

of its predecessors in the total order have been

delivered (abcast in Isis)

� Safe delivery, which guarantees that, if any

process within a component delivers a message,

then that message has been received and will be

delivered by every other process in that compo-

nent unless that process fails (all-stable abcast in

Isis).

Causal delivery applies only to messages broadcast

in the same con�guration and does not extend back to

prior con�gurations. Agreed and safe delivery impose

severe requirements on the algorithms in the presence

of network partitioning and remerging and of process

failure and recovery. Process p guarantees to deliver

every message broadcast for delivery in agreed order in

con�guration c that precedes the con�guration change

message delivered by p to terminate c. Delivery in safe

order is even more demanding because it guarantees,

in addition, that a message delivered in safe order by p

will be delivered by every other process in c unless that

process fails. In this paper we focus on safe messages.

To achieve safe delivery in the presence of network

partitioning and remerging and of process failure and

recovery, the extended virtual synchrony algorithm

presents to the application two types of con�gurations.

In a regular con�guration new messages are broad-

cast and delivered. In a transitional con�guration no

new messages are broadcast but the remaining mes-

sages from the prior regular con�guration are deliv-

ered. Those messages did not satisfy the safe or causal

delivery requirements in the regular con�guration and,

thus, could not be delivered in that con�guration.

A regular con�guration may be immediately fol-

lowed by several transitional con�gurations (one for

each component of the partitioned network) and may

be immediately preceded by several transitional con-

�gurations when several components merge together.

A transitional con�guration, in contrast, is immedi-

ately followed by a single regular con�guration and

is immediately preceded by a single regular con�g-

uration. A transitional con�guration consists of the

members of the next regular con�guration that have

the same preceding regular con�guration. Messages

can be delivered as safe in a transitional con�guration

even though they cannot be delivered as safe in the

preceding regular con�guration, so long as the appli-

cation is informed of the con�gurations in which the

messages are delivered. It is then up to the application

to determine how to proceed with this information.

Each process in a transitional or regular con�gu-

ration delivers a con�guration change message to the

application to terminate the prior con�guration and

initiate the new con�guration. Delivery of a con�gura-

tion change message that initiates a new con�guration

follows delivery of every message in the con�guration

that it terminates and precedes delivery of every mes-

sage in the con�guration that it initiates. The con-

�guration change message that initiates a transitional

con�guration de�nes the membership within which it



is possible to guarantee safe delivery of the remaining

messages of the prior regular con�guration.

For a process p that is a member of a regular con-

�guration c, we de�ne trans

p

(c) to be the transitional

con�guration that follows c at p, if such a con�gu-

ration exists. For a process p that is a member of a

transitional con�guration c, trans

p

(c) = c. For a proc-

ess p that is a member of a transitional con�guration

c, we de�ne reg

p

(c) to be the regular con�guration

that immediately precedes c. For a process p that is a

member of a regular con�guration c, reg

p

(c) = c. We

de�ne com

p

(c) to be either one of the con�gurations

reg

p

(c) or trans

p

(c). We use c to refer to a single spe-

ci�c con�guration. If both p and q are members of c,

then reg

p

(c) = reg

q

(c). However, trans

p

(c) is not nec-

essarily equal to trans

q

(c) and, thus, com

p

(c) is not

necessarily equal to com

q

(c).

The speci�cation of extended virtual synchrony is

de�ned in terms of four types of events:

� deliver conf

p

(c): process p delivers a con�gura-

tion change message initiating con�guration c,

where p is a member of c

� send

p

(m; c): process p sends (originates) message

m while p is a member of con�guration c

� deliver

p

(m; c): process p delivers messagem while

p is a member of con�guration c

� fail

p

(c): process p fails while p is a member of

con�guration c.

The fail

p

(c) event is the actual failure of process p in

con�guration c and is distinct from a deliver conf

q

(c

0

)

event that removes p from con�guration c. After a

fail

p

(c) event, process p may remain failed forever or

may recover with a deliver conf

p

(c

00

) event, where the

membership of c

00

is fpg.

The precedes relation, !, de�nes a global partial

order on all events in the system, and the ord function,

from events to natural numbers, de�nes a virtual or

logical total order on those events. The ord function is

not one-to-one, because some events in di�erent proc-

esses are required to occur at the same logical time.

The speci�cations for extended virtual synchrony be-

low de�ne the ! relation and the ord function.

2.1 The Extended Virtual Synchrony

Model

The model of extended virtual synchrony consists of

Speci�cations 1-7 below, which are expressed in terms

of the partial order relation, !, and the total order

function, ord. The causal delivery requirements, given

by Speci�cation 5, apply only to messages sent (orig-

inated) within a single con�guration.

Speci�cations 1-5 are illustrated in Figures 1-5.

Speci�cations 6 and 7 are more di�cult to depict and

so are not shown. In these �gures vertical lines corre-

spond to processes, an open circle represents an event

that is assumed to exist, a star represents an event

that is asserted to exist, a light edge without an arrow

represents a precedes relation that holds because of

some other speci�cation, a medium edge with an ar-

row represents a precedes relation that is assumed to

hold, a heavy edge with an arrow represents a precedes

relation that is asserted to hold, and a cross through

an event (relation) indicates that the event (relation)

does not occur.

In these speci�cations when we write \there ex-

ists send

p

(m; c)" we mean that there exist a proc-

ess p, a message m and a con�guration c such that

process p sends message m in con�guration c and,

similarly, for \there exists deliver

p

(m; c)" and \there

exists deliver conf

p

(m; c)". Moreover, when we write

\deliver

p

(m;com

p

(c))" we mean \deliver

p

(m;reg

p

(c))"

or \deliver

p

(m;trans

p

(c))".

Basic Delivery

Speci�cation 1.1 requires that the ! relation is a

partial order relation (re
exive,

�

anti-symmetric and

transitive), and Speci�cation 1.2 requires that the

events within a single process are totally ordered by

the ! relation. Speci�cation 1.3 requires that the

sending of a message precedes its delivery, and that

the delivery occurs in the con�guration in which the

message was sent or in an immediately following tran-

sitional con�guration. Speci�cation 1.4 asserts that

a given process does not send, or deliver, the same

message in two di�erent con�gurations and that two

di�erent processes do not send the same message.

1.1. For any event e, e ! e. If there exist events e

and e

0

such that e ! e

0

, where e 6= e

0

, then it is not

the case that e

0

! e. If there exist events e, e

0

and e

00

such that e! e

0

and e

0

! e

00

, then e! e

00

.

1.2. If there exists an event e that is send

p

(m; c),

deliver

p

(m; c), fail

p

(c) or deliver conf

p

(c) and an event

e

0

that is send

p

(m

0

; c

0

), deliver

p

(m

0

; c

0

), fail

p

(c

0

) or

deliver conf

p

(c

0

), then e ! e

0

or e

0

! e.

1.3. If there exists deliver

p

(m; c), then there ex-

ists send

q

(m;reg

q

(c)) such that send

q

(m;reg

q

(c)) !

deliver

p

(m; c).

1.4. If there exists send

p

(m; c), then c = reg

p

(c)

and there does not exist send

p

(m; c

0

), where c 6=

c

0

, or send

q

(m; c

00

), where p 6= q. Moreover, if

there exists deliver

p

(m; c), then there does not exist

deliver

p

(m; c

0

), where c 6= c

0

.

Delivery of Con�guration Changes

Speci�cation 2.1 requires that, if a process is a mem-

ber of a con�guration and does not install or does

not remain a member of that con�guration, then the

other processes install a new con�guration. In par-

ticular, this means that if the process fails, then the

other processes will detect the failure and install a

new con�guration. Speci�cation 2.2 states that at any

moment a process is a member of a unique con�gura-

tion whose events are delimited by the con�guration

change event(s) for that con�guration. Speci�cations

2.3 and 2.4 assert that an event that precedes (fol-

lows) delivery of a con�guration change by one process

must also precede (follow) delivery of that con�gura-

tion change by other processes.

�

The ! relation could have been de�ned to be irre
exive but,

to conform to the standard mathematical de�nition of a partial

order, we de�ne the! relation to be re
exive.
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Speci�cation 1.1

deliver  (m’,c’)p

send  (m,c)p

send  (m,c)p

deliver  (m’,c’)p
OR

Speci�cation 1.2

send  (m,reg  (c))q q

deliver  (m,c)p

Speci�cation 1.3

send  (m,c)p

send  (m,c’)p

send  (m,c’’)q

Speci�cation 1.4

Figure 1: Basic Delivery Speci�cations.

2.1. If there exists deliver conf

p

(c), there does not

exist fail

p

(c), there does not exist deliver conf

p

(c

0

)

such that deliver conf

p

(c) ! deliver conf

p

(c

0

), where

c 6= c

0

, and if q is a member of c, then there

exists deliver conf

q

(c), there does not exist fail

q

(c)

and there does not exist deliver conf

q

(c

00

) such that

deliver conf

q

(c)! deliver conf

q

(c

00

), where c 6= c

00

.

2.2. If there exists an event e that is either

send

p

(m; c) or deliver

p

(m; c) or fail

p

(c), then there ex-

ists deliver conf

p

(c) such that deliver conf

p

(c)! e and

there does not exist an event e

0

such that e

0

is fail

p

(c)

or deliver conf

p

(c

0

) and deliver conf

p

(c) ! e

0

! e,

where e 6= e

0

and c 6= c

0

.

2.3. If there exist deliver conf

p

(c), deliver conf

q

(c)

and e such that deliver conf

p

(c) ! e, where e 6=

deliver conf

p

(c), then deliver conf

q

(c)! e.

2.4. If there exist deliver conf

p

(c), deliver conf

q

(c)

and e such that e ! deliver conf

p

(c), where e 6=

deliver conf

p

(c), then e! deliver conf

q

(c).

Self-Delivery

Speci�cation 3 requires that each process delivers each

message it sends, provided that it does not fail. This

delivery may occur in a transitional con�guration that

consists of only the process that sent the message.

3. If there exist send

p

(m; c) and deliver conf

p

(c

0

)

such that send

p

(m; c)! deliver conf

p

(c

0

), where c

0

6=

deliver_conf  (c)q

fail  (c)q

deliver_conf  (c)p

deliver_conf  (c’)p

Speci�cation 2.1

deliver_conf  (c)p

send  (m,c)p

deliver_conf  (c’)pfail  (c)p

Speci�cation 2.2

deliver_conf  (c)q

deliver_conf  (c)p

e

Speci�cation 2.3

deliver_conf  (c)q

deliver_conf  (c)p

e

Speci�cation 2.4

Figure 2: Con�guration Change Speci�cations.

trans

p

(c), and there does not exist fail

p

(com

p

(c)), then

there exists deliver

p

(m;com

p

(c)).

Failure Atomicity

Speci�cation 4 requires that, if any two processes pro-

ceed together from one con�guration to the next, then

both processes deliver the same set of messages in that

con�guration.

4. If there exist deliver conf

p

(c), deliver conf

p

(c

000

),

deliver conf

q

(c), deliver conf

q

(c

000

) and deliver

p

(m; c)

such that deliver conf

p

(c) ! deliver conf

p

(c

000

),

where c 6= c

000

, and there does not exist

deliver conf

p

(c

0

) such that deliver conf

p

(c) !

deliver conf

p

(c

0

) ! deliver conf

p

(c

000

), where c 6= c

0

and c

0

6= c

000

, and there does not exist deliver conf

q

(c

00

)

such that deliver conf

q

(c) ! deliver conf

q

(c

00

) !

deliver conf

q

(c

000

), where c 6= c

00

and c

00

6= c

000

, then

there exists deliver

q

(m; c).

Causal Delivery

Unlike other researchers, we model causality so that it

is local to a single con�guration and is terminated by a

membership change. Simpler formulations of causality

are not appropriate when a network may partition and

remerge or when a process may fail and restart with

stable storage intact and with the same identi�er.

The causal relationship between messages is ex-

pressed in Speci�cation 5 as a precedes relation be-



deliver_conf  (c’)p

send  (m,c)p

deliver  (m,com  (c))p

fail  (com  (c))p p

p

Speci�cation 3

Figure 3: Self-Delivery Speci�cation.

deliver_conf  (c)p deliver_conf  (c)q

deliver_conf  (c’’’)p
deliver_conf  (c’’’)q

deliver_conf  (c’’)q

deliver  (m,c)p
deliver  (m,c)q

deliver_conf  (c’)p

Speci�cation 4

Figure 4: Failure Atomicity Speci�cation.

tween the sending of two messages in the same con-

�guration. This precedes relation is contained in the

transitive closure of the precedes relations established

by Speci�cations 1.1-1.3.

Speci�cation 5 requires that if one message is sent

before another in the same con�guration and if a pro-

cess delivers the second of those messages, then it also

delivers the �rst.

5. If there exist send

p

(m; c), send

q

(m

0

; c) and

deliver

r

(m

0

;com

r

(c)) such that send

p

(m; c) !

send

q

(m

0

; c), then there exists deliver

r

(m;com

r

(c))

such that deliver

r

(m;com

r

(c)) ! deliver

r

(m

0

;com

r

(c)).

Totally Ordered Delivery

The following speci�cations constrain the de�nition of

the ord function. Speci�cation 6.1 requires the total

order to be consistent with the partial order. Spec-

i�cation 6.2 asserts that processes deliver con�gura-

tion change messages for the same con�guration at

the same logical time and that they deliver the same

message at the same logical time. Speci�cation 6.3

requires that processes deliver messages in order ex-

cept that, in the transitional con�guration, there is no

obligation to deliver messages sent by processes not in

the transitional con�guration.

6.1. If there exist events e and e

0

such that e! e

0

,

where e 6= e

0

, then ord(e) < ord(e

0

).

6.2. If there exist events e and e

0

that are either

deliver conf

p

(c) and deliver conf

q

(c) or deliver

p

(m; c)

and deliver

q

(m; c

0

), then ord(e) = ord(e

0

).

6.3. If there exist deliver

p

(m;com

p

(c)), deliver

p

(m

0

;

com

p

(c)), deliver

q

(m

0

; c

0

), send

r

(m;reg

r

(c

0

)) such that

ord(deliver

p

(m;com

p

(c))) < ord(deliver

p

(m

0

;com

p

(c)))

and r is a member of c

0

, then there exists

deliver

q

(m;com

q

(c

0

)).

Note that the relationship between c and c

0

in Spec-

i�cation 6 can only be one of the following: either they

are the same regular or transitional con�guration or

send  (m,c)p

deliver  (m,com  (c))r

deliver  (m’,com  (c))r

r

r

send  (m’,c)q

Speci�cation 5

Figure 5: Causal Delivery Speci�cation.

they are di�erent transitional con�gurations for the

same regular con�guration, or one is a regular con�g-

uration and the other is a transitional con�guration

that follows it.

Safe Delivery

Speci�cation 7.1 requires that, if any process delivers

a message in a con�guration, then each process in that

con�guration delivers the message unless that process

fails. Speci�cation 7.2 asserts that, if any process de-

livers a safe message in a regular con�guration, then

all processes in that con�guration deliver con�gura-

tion change messages for that con�guration.

7.1. If there exists deliver

p

(m; c) for a safe mes-

sage m, then for all members q of c there exists

deliver

q

(m;com

q

(c)) or fail

q

(com

q

(c)).

7.2. If there exists deliver

p

(m;reg

p

(c)) for a safe

message m, then for all members q of reg

p

(c) there

exists deliver conf

q

(reg

p

(c)).

Finally, note that the Basic Delivery Speci�cation

1.2, when restricted to a single con�guration, ex-

presses causality of events within a single process.

Also note that, if we modify Speci�cation 5 by replac-

ing send

p

(m; c) by deliver

q

(m; c), then the modi�ed

speci�cation follows from the existing Speci�cation 5

and Speci�cation 1.3.

Speci�cations 5 through 7 represent increasing lev-

els of service. Some systems may operate without

the causal order requirement; other systems need the

causal order requirement and may add a total order

requirement and/or a safe delivery requirement as ap-

propriate for the application.

2.2 The Primary Component Model

The properties required of the history H of primary

components are de�ned below, where C, C

0

and C

00

represent primary components.

Uniqueness

The history H of primary components is totally or-

dered by the ! relation.

1. If there exist deliver conf

p

(C), deliver conf

q

(C

0

)

in H, then deliver conf

p

(C) ! deliver conf

q

(C

0

) or

deliver conf

q

(C

0

) ! deliver conf

p

(C).

Continuity

For each pair of consecutive primary compo-

nents in the history H, at least one process is

a member of both.

2. If there exist deliver conf

p

(C), deliver conf

r

(C

00

)

in H and there does not exist deliver conf

q

(C

0

) in



H such that deliver conf

p

(C) ! deliver conf

q

(C

0

) !

deliver conf

r

(C

00

), where C 6= C

0

and C

0

6= C

00

, then

there exists a process s that is a member of both C

and C

00

.

3 An Algorithm for Implementing

Extended Virtual Synchrony

We now present an algorithm that implements ex-

tended virtual synchrony for safe delivery of totally

ordered messages on top of the message transmis-

sion, membership, and total ordering algorithms. The

Totem protocol [3] incorporates these algorithms and

provides extended virtual synchrony. The steps of the

extended virtual synchrony algorithm, executed by an

individual process, are as follows.

1. In a regular con�guration, this process sends

and receives messages, holding in a message bu�er any

messages that it has received but cannot yet deliver.

The process delivers a message as safe when it has de-

livered all of the messages that precede the message

in the total order and has received acknowledgments

for the message from all of the other processes in the

con�guration. An acknowledgment indicates that a

process has received and will deliver the message un-

less it fails.

In a regular con�guration, this process records that

there are no processes to which it is obligated. A

process p is obligated to a process q when p has trans-

mitted an acknowledgment for a message m sent (orig-

inated) by q that enables another process to deliver m

as safe. The set of processes to which p is obligated is

referred to as its obligation set.

When this process has been informed by the under-

lying membership algorithm of the membership and

identi�er of a proposed new con�guration, it com-

mences to perform the following steps, which consti-

tute the recovery algorithm.

2. Bu�er or reject all new messages from the ap-

plication until this process delivers a con�guration

change message for a regular con�guration to the ap-

plication. Bu�er any messages received for the pro-

posed new con�guration.

3. Exchange information with each process of

the proposed new con�guration. In particular, each

process supplies the identi�er of its last regular con-

�guration, the identi�er of the last safe message it

delivered, and its obligation set.

4.a. Determine the members of the proposed tran-

sitional con�guration of this process, i.e. the members

of the new regular con�guration whose previous reg-

ular con�guration is the same as the previous regular

con�guration of this process.

b. Determine the messages to be rebroadcast be-

cause some process in the proposed transitional con-

�guration of this process has not acknowledged receipt

of those messages.

5.a. Rebroadcast messages as required by Step 4.b

and acknowledge receipt of such messages.

b. Continue Step 5.a until all processes in the

proposed transitional con�guration of this process

acknowledge having received all of the rebroadcast

messages.

c. If during Step 5.a this process acknowledges hav-

ing received all of the rebroadcast messages, it includes

the members of the proposed transitional con�gura-

tion and their obligation sets in its obligation set.

6.a. Discard all messages, except those sent by a

member of the obligation set of this process, that fol-

low the �rst unavailable message in the total order.

Such messages must be discarded because they may be

causally dependent on an unavailable message. The

obligation set includes all members of the proposed

transitional con�guration of this process.

b. Deliver to the application in order all of the

rebroadcast messages that are safe in the preceding

regular con�guration up to but not including the �rst

totally ordered message for which a predecessor in

the total order is unavailable, or the �rst message for

which safe delivery was requested but for which some

process in the preceding regular con�guration has not

acknowledged receipt.

c. Deliver a �rst con�guration change message that

introduces the transitional con�guration.

d. Deliver in order, from the remaining undelivered

messages, all messages whose predecessors in the total

order have been delivered, and all messages sent by a

process in the obligation set of this process.

e. Deliver a second con�guration change message to

terminate the transitional con�guration and install the

new regular con�guration reported by the underlying

membership algorithm.

The parts of Step 6 are performed locally as an

atomic action without communication with any other

process. If a failure occurs during execution of the

recovery algorithm, then the membership algorithm

is invoked and the recovery algorithm is restarted at

Step 2.

3.1 An Example of Con�guration Changes

and Message Delivery

Consider the example shown in Figure 6. Here a regu-

lar con�guration containing processes p, q and r parti-

tions and p becomes isolated while q and r merge into a

regular con�guration with processes s and t. Processes

q and r deliver two con�guration change messages, one

to shift from the old regular con�guration fp; q; rg to

the transitional con�guration fq; rg and the other to

shift from the transitional con�guration fq; rg to the

new regular con�guration fq; r; s; tg.

Processes q and r may not be able to deliver all

of the messages broadcast in the regular con�guration

fp; q; rg. In particular, they cannot deliver any mes-

sage for which the causal or safe delivery requirement

for fp; q; rg is not satis�ed.

If process p sends message m after sending message

l but q and r did not receive l before a con�guration

change occurred, then q cannot deliver m because its

causal predecessor l is not available.

By the self-delivery property (Speci�cation 3), q

and r must each deliver the messages they themselves

sent in fp; q; rg. Of course, each process q and r has

its own messages and also any messages that causally

precede its own messages, since it must have delivered

such messages before it sent its own messages.
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Figure 6: An Example of Con�guration Changes and

Message Delivery.

After the message exchange for the transitional con-

�guration fq; rg has been completed, both q and r

have all messages sent by q or r and all the causal

predecessors of such messages. Furthermore, all such

messages are safe in fq; rg and, consequently, can be

delivered in the transitional con�guration.

If process r sends message n for safe delivery

but does not receive an acknowledgment for n from

both p and q before a con�guration change occurs,

then r cannot deliver n in the regular con�gura-

tion fp; q; rg. If, however, r receives an acknowl-

edgment for n from q, then r can deliver n in the

transitional con�guration fq; rg.

3.2 Proof that the Algorithm Satis�es

Extended Virtual Synchrony

Speci�cation 1.1 states that the! relation is a partial

order. The re
exive property is a matter of de�nition.

The transitive and acyclic properties are assumptions

that we are making about the real world. Speci�cation

1.2 expresses the fact that a process has a single thread

of control. Speci�cations 1.3 and 1.4 follow from the

underlying broadcast mechanisms.

Speci�cations 2.1-2.4 follow from the underlying

membership algorithm.

Speci�cation 3 requires that a process delivers its

own messages, provided that it does not fail. In par-

ticular, when a process considers the undelivered mes-

sages in Step 6 of the extended virtual synchrony re-

covery algorithm, no message sent by any member

of the transitional con�guration is discarded on the

grounds that it is causally dependent on an unavail-

able message. All of the preceding messages must have

been available to the process that sent the message

and, thus, are available to all members of the transi-

tional con�guration after the message exchange.

Speci�cation 4 requires that processes deliver the

same set of messages in a regular con�guration and

the same set of messages in a transitional con�gura-

tion. After the message exchange in Step 5 of the

extended virtual synchrony recovery algorithm, all

processes in the transitional con�guration have the

same set of messages and apply the same algorithm to

determine message delivery in the regular and transi-

tional con�gurations.

Speci�cation 5 follows immediately if m

0

is deliv-

ered in a regular con�guration. If m

0

is delivered

in a transitional con�guration, then q is a member

of that con�guration or of the obligation set. Since

send

p

(m; c)! send

q

(m

0

; c), either p = q or m was de-

livered by q before q sent m

0

and, thus, m is safe in c.

In either case, m is delivered before m

0

in the regular

or transitional con�guration.

Speci�cations 6.1 and 6.2 follow from the de�nition

of the ord function and from the consistency provided

by Step 6 of the extended virtual synchrony recov-

ery algorithm and by the message total ordering algo-

rithm. In addition, Speci�cation 6.1 depends on the

fact that a process has a single thread of control.

Speci�cation 6.3 follows by an argument similar to

that for Speci�cation 3. In Step 6.a of the extended

virtual synchrony recovery algorithm, messages from

processes not in the transitional con�guration may be

dropped, but messages from members of the transi-

tional con�guration are delivered in order.

Speci�cation 7.1 is obvious if all processes complete

the extended virtual synchrony recovery algorithm. If,

however, further processes fail or a further partition

occurs during the recovery algorithm, more care is

required. Some processes may not complete the re-

covery algorithm but may instead receive a further

membership change from the underlying membership

algorithm, causing them to restart the recovery algo-

rithm. If such a process has acknowledged receipt of

all of the rebroadcast messages, it is possible that some

other process may have completed the recovery algo-

rithm and installed the next regular con�guration be-

fore the failure occurred. The other process may have

delivered messages as safe in the transitional con�g-

uration, relying on the acknowledgment supplied by

this process. The concept of obligation ensures that

these messages are indeed delivered by all of the proc-

esses needed to satisfy the safe delivery requirement.

Speci�cation 7.2 follows directly from Step 6.e of

the extended virtual synchrony recovery algorithm.

Termination Property

Note that the termination of the recovery algorithm

is dependent on the termination of the membership

algorithm. The underlying membership algorithmwill

eventually terminate if it has the property that, if the

next proposed regular con�guration is not installed

within a bounded time, then the membership of that

con�guration is reduced. The Totem protocol and the

Transis system preserve extended virtual synchrony

and contain a membership algorithm that terminates

within a bounded time.

4 The Virtual Synchrony Model

We now summarize Birman's model of virtual syn-

chrony, as it is presented in [6] where more discussion

and details can be found. We then show in Section

5 how virtual synchrony can be implemented on top

of extended virtual synchrony. This model of virtual

synchrony is based on Lamport's causality relation,

!, de�ned in [10], i.e. the transitive closure of

� e! e

0

, where e and e

0

are local to a process

� send(m) ! deliver(m)

The events local to a process are send(m), deliver(m)

and stop. In addition, the virtual synchrony model

has the group events: view

i

(g), cbcast(g;m) and



abcast(g;m), where g is a group, i is a process and

m is a message.

A history H is said to be complete if

C1. For each event e

0

2 H and for all e! e

0

, e 2 H.

C2. For each send(m) 2 H, there is a corresponding

deliver(m) 2 H.

C3. Each multicast message m, that is delivered by

a process in view g

x

, is delivered by all other members

of g

x

, where x denotes the xth instance of group g.

A complete history H is said to be legal if it satis�es

the following constraints:

L1. Each event e 2 H can be labelled with a

global time, time(e), that respects the causal order of

events, i.e. for any two events e and e

0

, e! e

0

implies

time(e) < time(e

0

).

L2. Distinct events of the same process have dis-

tinct times.

L3. Membership change events for the same view

but distinct processes have the same logical time, i.e.

time(view

i

(g

x

)) = time(view

j

(g

x

)).

L4. Deliver events of a multicast message m occur

in the same view g

x

for each process that delivers m,

i.e. for each process i that delivers m the most re-

cent membership change event preceding deliver

i

(m)

is view

i

(g

x

).

L5. For any two events deliver

i

(m) and deliver

j

(m)

of an abcast message m, time(deliver

i

(m)) =

time(deliver

j

(m)).

Extend(H) is de�ned to be the set of histories ob-

tained by extending the local process histories within

the history H by appending any missing deliver

and view events that correspond to unpaired send,

cbcast, abcast and view events in H.

Failure of a process is modeled by the distinguished

�nal event, stop. The history of a failed process is

extended by prepending the missing events before the

stop event, but after any other events executed by the

failed process prior to the failure.

A system execution is acceptable if, for any history

H, there exists a history H

0

2 extend(H) that is cor-

rect and legal.

A system is virtually synchronous if deliver(m) and

view(g) events appear to occur simultaneously in the

processes in which they occur.

4.1 The Failure Model

Birman assumes that failures respect the fail-stop

model, and adopts a primary partition model in which

at most one primary partition

y

is permitted to con-

tinue execution. A membership service noti�es mem-

bers of the primary partition when failures occur. The

failed process is then removed from the primary par-

tition. If a failed process subsequently recovers and

reconnects to the primary partition, it does so with a

new identi�er.

y

We use the term \component" to refer to a set of processes

that can communicate among themselves and that are not able

to communicate with processes in other components, and \par-

tition" to refer to the collection of components that comprise

the system. Thus, a primary partition in Birman's terminology

is a primary component in our terminology.

A failure appears as a stop event that satis�es the

following properties:

1. The membership service behaves like a single,

continuously operational process. If a partition oc-

curs, progress is permitted in only one partition, if

any.

2. A failed process will be dropped from any groups

to which it belongs, i.e. if P

i

[t] = stop, then there

exists t

0

> t such that, for all groups g, P

i

2 g[t] )

P

i

62 g[t

0

].

3. After a process has been observed to fail, no

additional messages will be received from it.

4.2 Multicast Delivery Guarantees

A uniform multicast is a multicast m such that if any

process delivers m in g

x

then, even if that process

fails, all processes deliver m in g

x

. A multicast m

that does not guarantee this uniformity property is a

non-uniform multicast.

5 An Algorithm for Implementing

Virtual Synchrony on Top of

Extended Virtual Synchrony

We now provide an algorithm for implementing virtual

synchrony on top of our basic model, the extended vir-

tual synchrony algorithm, and a primary component

algorithm (Figure 7). We construct a �lter on a sys-

tem that maintains extended virtual synchrony and

show that all of the runs produced by this �lter are ac-

ceptable executions according to the virtual synchrony

model.

The primary component algorithm receives con�g-

uration change messages from the membership algo-

rithm. It delivers these messages to the application

with an indication as to whether the new con�guration

is a primary component. A simple primary component

algorithm is easily constructed; we are currently de-

veloping an algorithm that has a greater probability

of �nding a primary component and thereby reduces

the risk that all processes will be blocked.

The �lter runs locally at a process within a con�g-

uration and is de�ned as follows:

1. Upon receiving a con�guration change mes-

sage for a transitional con�guration trans

p

(c), mask

this event and transform all deliver

p

(m;trans

p

(c))

events into deliver

p

(m;reg

p

(c)) events until the

next deliver con�g event for a regular con�guration

is received.

2. Upon receiving a con�guration change message

for a regular con�guration that is not a primary com-

ponent, block, i.e. don't accept any messages from the

application for sending and discard any messages or

con�guration changes received until this process be-

comes a member of the primary component.

3. For a process in the primary component, upon

receiving a con�guration change message for a regular

con�guration that is a primary component and that

merges a non-primary component containing several

processes into the primary component, split the de-

livery of the single con�guration change message into

multiple events each of which merges one process at
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Figure 7: Virtual Synchrony and Extended Virtual Synchrony.

a time into the primary component in a deterministic

order (such as lexicographical order).

4. For a process in a non-primary component, upon

receiving a con�guration change message for a regu-

lar con�guration that is a primary component, merge

the processes in the non-primary component into the

primary component, generating con�guration change

events as required in Rule 3.

In the extended virtual synchrony model a process

that fails and recovers installs a singleton con�gura-

tion. This singleton con�guration is not the primary

component and, thus, is blocked by the �lter because

of Rule 2 until the process is merged with the primary

component in Rule 4.

In the extended virtual synchrony model there is

no change in identi�er of a resumed process; however,

in the virtual synchrony model a resumed process has

a new identi�er. We can easily accommodate this in

Rule 4 of the �lter by giving a new identi�er to a

process on being merged into the primary component.

5.1 Proof that the Algorithm Satis�es

Virtual Synchrony

A run produced by this �lter can be completed using

the extend mechanism of the virtual synchrony model.

We now show that the completed run is legal. Our ord

function corresponds to Birman's time function; both

provide virtual or logical event ordering.

Property C1 corresponds to Speci�cations 1.3, 1.4,

2.2 and 5.

Property C2 is achieved by Speci�cation 3 and

the extend mechanism which yields a complete his-

tory. If there were a fail

p

(c) event in the �ltered his-

tory, then the extend mechanism would add all of the

deliver

p

(m; c) events that correspond to unmatched

send

p

(m; c) events prior to this fail

p

(c) event.

Property C3 is achieved by Speci�cation 4 and the

extend mechanism if appropriately revised to exclude

from the history messages sent by failed processes that

were not delivered by one or more processes that do

not fail.

Property L1 follows directly from our assumption

of the ord function and Speci�cation 6.1, if we assume

that the events in L1 are distinct.

Property L2 follows from Speci�cations 1.1, 1.2

and 6.1.

Property L3 follows from Speci�cation 6.2, where

the view

i

(g

x

) event corresponds to our deliver conf

p

(c)

event.

Property L4 is achieved by �rst applying the

extend mechanism to achieve a complete history. By

Speci�cations 1.3 and 1.4, for each deliver

p

(m; c),

there exists send

q

(m;reg

q

(c)), where c = reg

p

(c)

or trans

p

(c) and reg

p

(c) = reg

q

(c). By Speci�-

cation 2.2, there exists deliver conf

p

(c) such that

deliver conf

p

(c)! deliver

p

(m; c) and there does not

exist deliver conf

p

(c

0

), where c 6= c

0

, such that

deliver conf

p

(c) ! deliver conf

p

(c

0

) ! deliver

p

(m; c).

Rule 1 of the �lter masks all deliver conf

p

(trans

p

(c

00

))

events and transforms all deliver

p

(m;trans

p

(c

00

))

events into deliver

p

(m;reg

p

(c

00

)) events. Therefore, af-

ter the �lter has been applied, message m is delivered

in the view in which it was sent.

Property L5 follows from Speci�cation 6.2.

5.2 Comparison of the Failure Models

The failure model of extended virtual synchrony,

which allows network partitioning and remerging and

also process failure and recovery with stable storage,

is more general than the fail-stop model of virtual syn-

chrony described in Section 4.1. It is possible to sim-

ulate fail-stop behavior in the extended virtual syn-

chrony model by requiring a failed process to assume

a new identity when it recovers.

The de�nition of a primary partition (component)

is stated as Property 1 of the failure model of virtual

synchrony. In that model as well as in our model an

algorithm for maintaining a history of primary com-

ponents may block.

Property 2 of the failure model of virtual synchrony

is stronger than (does not follow from) Speci�cation

2.1 of the extended virtual synchrony model. We allow

a process to fail and recover su�ciently rapidly that it

can be included in the next con�guration, whereas the

failure model of virtual synchrony requires the process

to be excluded from that and all future con�gurations.

Property 3 of the failure model of virtual synchrony

derives from Speci�cation 2.2. After �ltering and the

delivery of a con�guration change, no message is de-

livered that was sent by a process that was a member

of the old con�guration but not the new con�guration,

in particular because that process failed.

5.3 Comparison of the

Multicast Properties

It is interesting to compare the di�erent approaches

used by virtual synchrony and extended virtual syn-

chrony to achieve an approximation to the property

that a message is not delivered unless it is delivered

by all members of the con�guration. Perfection is not

possible as it would require common knowledge [8].

The virtual synchrony approach achieves this ap-

proximation in uniform multicast by extending the

history using the extend mechanism, which assumes

that the last few events in a failed process are lost

forever and, thus, can impute delivery of a uniform

multicast message to a failed process. This approach

does not, of course, address systems that may parti-

tion and remerge or processes that may fail and restart

with stable storage intact.



The extended virtual synchrony approach achieves

this approximation in safe delivery, as de�ned by Spec-

i�cations 7.1 and 7.2. It accepts that, for some mes-

sages, it may be impossible to determine whether a

failed process has delivered them. The key mechanism

of extended virtual synchrony is reduction in the size

of the con�guration. If it is impossible to determine

whether a process will deliver a message, because of

process failure or network partitioning, then a smaller

transitional con�guration is created, excluding that

process. All processes in this smaller transitional con-

�guration will deliver the message. Whether the more

precise information provided by extended virtual syn-

chrony is useful to an application program depends on

the needs and sophistication of the application.

Another di�erence between the models is in the

delivery of messages. Virtual synchrony requires in

Property C1 that, for each message sent, some proc-

ess delivers that message (not necessarily the one

that sent it). In contrast, extended virtual syn-

chrony requires in Speci�cation 3 that each mes-

sage is delivered by the process that sent it un-

less that process fails. The assumption of the vir-

tual synchrony model is satis�ed conceptually by

extending the history using the extend mechanism,

whereas the safe property of the extended virtual syn-

chrony model ensures that the self-delivery require-

ment is satis�ed by an actual history.

6 Conclusion

Extended virtual synchrony is a valuable abstraction

for a distributed system. It maintains a consistent re-

lationship between the delivery of messages and the

delivery of con�guration changes across all processes

in a distributed system, even in the presence of net-

work partitioning and remerging and of process failure

and recovery with stable storage intact.

We have described an algorithm that implements

extended virtual synchrony. This algorithm is cur-

rently operating in the Totem protocol at the Univer-

sity of California, Santa Barbara, and in the Transis

system at the Hebrew University of Jerusalem.

We have also described a �lter, running on top

of extended virtual synchrony, that implements the

Isis virtual synchrony model. This demonstrates

that extended virtual synchrony does indeed extend

virtual synchrony.

Acknowledgment. We wish to thank Danny Dolev

for his insights and encouragement of this work.

References

[1] Y. Amir, D. Dolev, S. Kramer and D. Malki,

\Transis: A communication sub-system for high

availability," Proceedings of the 22nd Annual In-

ternational Symposium on Fault-Tolerant Com-

puting, Boston, MA (July 1992), pp. 76{84.

[2] Y. Amir, D. Dolev, S. Kramer and D. Malki,

\Membership algorithms in broadcast domains,"

Proceedings of the 6th International Workshop on

Distributed Algorithms, Haifa, Israel (November

1992), Lecture Notes in Computer Science 647,

pp. 292-312.

[3] Y. Amir, L. E. Moser, P. M. Melliar-Smith,

D. A. Agarwal and P. Ciarfella, \Fast mes-

sage ordering and membership using a logical

token-passing ring," Proceedings of the IEEE 13th

International Conference on Distributed Com-

puting Systems, Pittsburgh, PA (May 1993),

pp. 551{560.

[4] K. P. Birman and T. A. Joseph, \Exploiting vir-

tual synchrony in distributed systems," Proceed-

ings of the ACM Symposium on Operating System

Principles (1987), pp. 123-138.

[5] K. P. Birman, A. Schiper and P. Stephenson,

\Lightweight causal and atomic group multicast,"

ACM Transactions on Computer Systems 9, 3

(August 1991), pp. 272{314.

[6] K. P. Birman, \Virtual synchrony model," In:

Reliable Distributed Computing with the Isis

Toolkit, IEEE Press.

[7] D. R. Cheriton and W. Zwaenepoel, \Distributed

process groups in the V kernel," ACM Trans-

actions on Computer Systems 3, 2 (May 1985),

pp. 77{107.

[8] J. Y. Halpern and Y. Moses, \Knowledge and

common knowledge in a distributed environ-

ment," Journal of the ACM 37, 3 (July 1990),

pp. 549{587.

[9] M. F. Kaashoek and A. S. Tanenbaum, \Group

communication in the Amoeba distributed oper-

ating system," Proceedings of the IEEE 11th In-

ternational Conference on Distributed Computing

Systems (May 1991), pp. 882{891.

[10] L. Lamport, \Time, clocks, and the ordering of

events in a distributed system," Communications

of the ACM (July 1978), pp. 558{565.

[11] P. M. Melliar-Smith, L. E. Moser and

V. Agrawala, \Broadcast protocols for dis-

tributed systems," IEEE Transactions on Paral-

lel and Distributed Systems 1, 1 (January 1990),

pp. 17{25.

[12] P. M. Melliar-Smith, L. E. Moser and D. A. Agar-

wal, \Ring-based ordering protocols," Proceed-

ings of the International Conference on Infor-

mation Engineering, Singapore (December 1991),

pp. 882{891.

[13] L. L. Peterson, N. C. Buchholz and R. D.

Schlichting, \Preserving and using context in-

formation in interprocess communication," ACM

Transactions on Computing Systems 7, 3 (Jan-

uary 1989), pp. 217{246.

[14] A. Schiper and A. Sandoz, \Uniform reliable mul-

ticast in a virtually synchronous environment,"

Proceedings of the 13th International Conference

on Distributed Computing Systems, Pittsburgh,

PA (May 1993), pp. 561{568.


