
Fei Wu
Related Authors
C. Piccirillo
Universidade Católica Portuguesa
Robert C Pullar
Università Ca' Foscari Venezia
R. Eguiluz
University of Illinois at Urbana-Champaign
Roberto C Andresen Eguiluz
University of California, Merced
Noah Pacifici
Cornell University
Sierra Cook
Cornell University
Delphine Gourdon
Cornell University
InterestsView All (7)
Uploads
Papers by Fei Wu
zone of cartilage; however, its role in the lubrication and the wear protection
of articular joints is unknown. In this work, we have investigated the molecular interactions between FN and various components of the synovial fluid such as lubricin (LUB), hyaluronan (HA), and serum albumin (SA), which are all believed to contribute to joint lubrication. Using a Surface Forces Apparatus, we have measured the normal (adhesion/repulsion) and lateral (friction) forces across layers of individual synovial fluid components physisorbed onto FN-coated mica substrates. Our chief findings are (i) FN strongly tethers LUB and HA to mica, as indicated by high and reversible long-range repulsive normal interactions between surfaces, and (ii) FN and LUB synergistically enhance wear protection of surfaces during shear, as suggested by the structural robustness of FN+LUB layers under pressures up to about 4 MPa. These findings provide new insights into the role of FN in the lubricating properties of synovial fluid components sheared between ideal substrates and represent a significant step forward in our understanding of cartilage damage involved in diseases such as osteoarthritis.
zone of cartilage; however, its role in the lubrication and the wear protection
of articular joints is unknown. In this work, we have investigated the molecular interactions between FN and various components of the synovial fluid such as lubricin (LUB), hyaluronan (HA), and serum albumin (SA), which are all believed to contribute to joint lubrication. Using a Surface Forces Apparatus, we have measured the normal (adhesion/repulsion) and lateral (friction) forces across layers of individual synovial fluid components physisorbed onto FN-coated mica substrates. Our chief findings are (i) FN strongly tethers LUB and HA to mica, as indicated by high and reversible long-range repulsive normal interactions between surfaces, and (ii) FN and LUB synergistically enhance wear protection of surfaces during shear, as suggested by the structural robustness of FN+LUB layers under pressures up to about 4 MPa. These findings provide new insights into the role of FN in the lubricating properties of synovial fluid components sheared between ideal substrates and represent a significant step forward in our understanding of cartilage damage involved in diseases such as osteoarthritis.